A suite of acyl chloride structural isomers (CHOCl) was used to effect gas-phase esterification of starch-based phytoglycogen nanoparticles (PhG NPs). The surface degree of substitution (DS) was quantified using X-ray photoelectron spectroscopy, while the overall DS was quantified using H NMR spectroscopy. Gas-phase modification initiates at the NP surface, with the extent of surface and overall esterification determined by both the reaction time and the steric footprint of the acyl chloride reagent.
View Article and Find Full Text PDFPreparation of an ordered mesoporous polypyrrole/carbon (PPy/OMC) composite has been described through a two-step nanocasting process using KIT-6 as a template. Characterization of the PPy/OMC nanocomposite by various analysis methods such as TEM, XRD, TGA, SEM and N sorption confirmed the preparation of a material with ordered mesoporous structure, uniform pore size distribution, high surface area and high stability. This nanocomposite was then used for the immobilization of palladium nanoparticles.
View Article and Find Full Text PDFWe have investigated the surface activity of poly(ethylene glycol) (PEG)-coated silver nanoparticles (Ag-PEG) in the presence or absence of lipid monolayers comprised of monounsaturated dioleoylphosphocholine and dioleoylphosphoglycerol (DOPC/DOPG; 1:1 mol ratio). Dynamic measurements of surface pressure demonstrated that Ag-PEG were surface-active at the air/water interface. Surface excess concentrations suggested that at high Ag-PEG subphase concentrations, Ag-PEG assembled as densely packed monolayers in the presence and absence of a lipid monolayer.
View Article and Find Full Text PDFContinuous and batch reactors were used to assess the effect of the exposure of casein-coated silver nanoparticles (AgNPs) on Escherichia coli (E. coli). Additionally, E.
View Article and Find Full Text PDFA green one-pot four-component strategy has been developed for the synthesis of [1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide derivatives using an amine, 2,2,6-trimethyl-4H-1,3-dioxin-4-one, an aldehyde, and 3-amino-1,2,4-triazole in the presence of a catalytic amount of p-toluenesulfonic acid in water within 4-6 h.
View Article and Find Full Text PDF