Experimental and numerical study has been performed for three techniques of mode-locking in all-fiber Holmium laser. We have compared the fundamental repetition rate pulsed generation for mode-locking based on: nonlinear polarization evolution, polymer-free single-walled carbon nanotubes, and hybrid mode-locking. Experimental and numerical simulation results demonstrated the shortest pulse duration and maximum spectrum width for mode-locking based on the nonlinear polarization evolution: 1.
View Article and Find Full Text PDFThe interaction of light with solids can be dramatically enhanced owing to electron-photon momentum matching. This mechanism manifests when light scattering from nanometer-sized clusters including a specific case of self-assembled nanostructures that form a long-range translational order but local disorder (crystal-liquid duality). In this paper, a new strategy based on both cases for the light-matter-interaction enhancement in a direct bandgap semiconductor - lead halide perovskite CsPbBr - by using electric pulse-driven structural disorder, is addressed.
View Article and Find Full Text PDFIn our study, we leveraged an electronic nose to detect the patterns of crude oils and their mixtures, sourced from the oil fields from neighboring regions in pursuit of the task of environmental impact evaluation. The temporal dynamics of oil-related patterns acquired by an electronic nose was tracked to identify the influence of high or low emissions of volatiles that depend on the oil composition. Analyzing the oils by Fourier-transform IR-spectroscopy and GC×GC-MS, we confirmed the correlation between sensor responses and the oil compositions, significantly dependent on the ratio of aromatic compounds/alkanes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Nanostructured ultraviolet (UV) light sources represent a growing research field in view of their potential applications in wearable optoelectronics or medical treatment devices. In this work, we report the demonstration of the first flexible UV-A light emitting diode (LED) based on AlGaN/GaN core-shell microwires. The device is based on a composite microwire/poly(dimethylsiloxane) (PDMS) membrane with flexible transparent electrodes.
View Article and Find Full Text PDFBackground: Real-time monitoring of food consumer quality remains challenging due to diverse bio-chemical processes taking place in the food matrices, and hence it requires accurate analytical methods. Thresholds to determine spoiled food are often difficult to set. The existing analytical methods are too complicated for rapid in situ screening of foodstuff.
View Article and Find Full Text PDFThe lattice geometry of natural materials and the structural geometry of artificial materials are crucial factors determining their physical properties. Most materials have predetermined geometries that lead to fixed physical characteristics. Here, the demonstration of a carbon nanotube network serves as an example of a system with controllable orientation achieving on-demand optical properties.
View Article and Find Full Text PDFThis study evaluates the performance advancement of electronic noses, on-chip engineered multisensor systems, exploiting a combinatorial approach. We analyze a spectrum of metal oxide semiconductor materials produced by individual methods of liquid-phase synthesis and a combination of chemical deposition and sol-gel methods with hydrothermal treatment. These methods are demonstrated to enable obtaining a fairly wide range of nanomaterials that differ significantly in chemical composition, crystal structure, and morphological features.
View Article and Find Full Text PDFWe explore dynamic structural superlubricity for the case of a relatively large contact area, where the friction force is proportional to the area (exceeding ∼100 nm^{2}) experimentally, numerically, and theoretically. We use a setup composed of two molecular smooth incommensurate surfaces: graphene-covered tip and substrate. The experiments and molecular dynamic simulations demonstrate independence of the friction force on the normal load for a wide range of normal loads and relative surface velocities.
View Article and Find Full Text PDFWe demonstrate that the power conversion efficiency (PCE), photocurrent, and fill factor (FF) of perovskite solar cells (PSC) can be significantly improved by the photoinduced self-gating in ionic liquids (ILs) via n-doping of the carbon nanotube (CNT) top electrode on the fullerene electron transport layer (ETL). CNTs, graphene, and other carbon electrodes have been proven to be stable electrodes for PSC, but efficiency was not high. We have previously shown that the performance of PSCs with CNT electrodes can be improved by IL gating with gate voltage () applied from an external power source.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) are considered to be promising material platforms for various photodetectors (including phototransistors) due to their unique optoelectrical properties (, high mobility and a wide variety of bandgap values). Herein, we present highly sensitive phototransistors which utilised sparse networks of SWCNTs on a silicon/silica substrate and operated by means of the photogating effect. The response of SWCNTs to photo-induced electrostatic charges (photogating effect) was highly dependent on the conductivity type of the channel, which was "metallic" or "semiconducting", depending on the SWCNT density.
View Article and Find Full Text PDFHybrid organic-inorganic perovskite solar cells (PSCs) have drawn great attention in the past decade due to the rapid growth of their power conversion efficiency (PCE) and the advantage of their low-cost fabrication. The hole-transport materials (HTMs) play a crucial role in achieving high efficiency and operational stability of PSCs. In this work, we report the synthesis of two novel conjugated polymers by coupling of the alkylsilyl-substituted benzo[1,2-:4,5-']dithiophene unit with the thiophene-bridged pyrazine block and their investigation as dopant-free HTMs in n-i-p PSCs.
View Article and Find Full Text PDFOptical waveguides covered with thin films, which transmittance can be controlled by external action, are widely used in various applications from optical modulators to saturable absorbers. It is natural to suggest that the losses through such a waveguide will be proportional to the absorption coefficient of the covering material. In this letter, we demonstrate that under certain conditions, this simple assumption fails.
View Article and Find Full Text PDFComposites comprising vanadium-pentoxide (VO) and single-walled carbon nanotubes (SWCNTs) are promising components for emerging applications in optoelectronics, solar cells, chemical and electrochemical sensors, . We propose a novel, simple, and facile approach for SWCNT covering with VO by spin coating under ambient conditions. With the hydrolysis-polycondensation of the precursor (vanadyl triisopropoxide) directly on the surface of SWCNTs, the nm-thick layer of oxide is amorphous with a work function of 4.
View Article and Find Full Text PDFThe integration of low-dimensional materials with optical waveguides presents promising opportunities for enhancing light manipulation in passive photonic circuits. In this study, we investigate the potential of aerosol-synthesized single-walled carbon nanotube (SWCNT) films for silicon nitride photonic circuits as a basis for developing integrated optics devices. Specifically, by measuring the optical response of SWCNT-covered waveguides, we retrieve the main SWCNT film parameters, such as absorption, nonlinear refractive, and thermo-optic coefficients, and we demonstrate the enhancement of all-optical wavelength conversion and the photoresponse with a 1.
View Article and Find Full Text PDFWe propose a simple dumbbell-shaped scheme of a Holmium-doped fiber laser incorporating a minimum number of optical elements. Mode-locking regimes were realized with the help of polymer-free single-walled carbon nanotubes (SWCNTs) synthesized using an aerosol (floating catalyst) CVD method. We show that such a laser scheme is structurally simple and more efficient than a conventional one using a ring cavity and a similar set of optical elements.
View Article and Find Full Text PDFWe examined the effect of hydrogen on the growth of single-walled carbon nanotubes in the aerosol (a specific case of the floating catalyst) chemical vapor deposition process using ethylene as a carbon source and ferrocene as a precursor for a Fe-based catalyst. With a comprehensive set of physical methods (UV-vis-NIR and Raman spectroscopies, transmission electron microscopy, scanning electron microscopy, differential mobility analysis, and four-probe sheet resistance measurements), we showed hydrogen to inhibit ethylene pyrolysis extending the window of synthesis parameters. Moreover, the detailed study at different temperatures allowed us to distinguish three different regimes for the hydrogen effect: pyrolysis suppression at low concentrations (I) followed by surface cleaning/activation promotion (II), and surface blockage/nanotube etching (III) at the highest concentrations.
View Article and Find Full Text PDFWe assess bithiophene (CHS) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decomposition make bithiophene an attractive promoter for the production of carbon nanotubes in general and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low bithiophene content, indicating the improvement of the product properties.
View Article and Find Full Text PDFWe propose a novel approach to disperse and extract small-diameter single-walled carbon nanotubes (SWCNTs) using an aqueous solution of riboflavin and Sephacryl gel. The extraction of small-diameter semiconducting SWCNTs was observed, regardless of the initial diameter distribution of the SWCNTs. Dispersion of SWCNTs occurs due to the adsorption of π-conjugated isoalloxazine moieties on the surface of small-diameter nanotubes and interactions between hydroxy groups of ribityl chains with water.
View Article and Find Full Text PDFDonor-acceptor conjugated polymers are considered advanced semiconductor materials for the development of thin-film electronics. One of the most attractive families of polymeric semiconductors in terms of photovoltaic applications are benzodithiophene-based polymers owing to their highly tunable electronic and physicochemical properties, and readily scalable production. In this work, we report the synthesis of three novel push-pull benzodithiophene-based polymers with different side chains and their investigation as hole transport materials (HTM) in perovskite solar cells (PSCs).
View Article and Find Full Text PDFControlling the permittivity of dielectric composites is critical for numerous applications dealing with matter/electromagnetic radiation interaction. In this study, we have prepared polymer composites, based on a silicone elastomer matrix and Tuball carbon nanotubes (CNT) via a simple preparation procedure. The as-prepared composites demonstrated record-high dielectric permittivity both in the low-frequency range (102−107 Hz) and in the X-band (8.
View Article and Find Full Text PDFThe films of single-walled carbon nanotubes (SWCNTs) are a promising material for flexible transparent electrodes, which performance depends not only on the properties of individual nanotubes but also, foremost, on bundling of individual nanotubes. This work investigates the impact of densification on optical and electronic properties of SWCNT bundles and fabricated films. Our ab initio analysis shows that the optimally densified bundles, consisting of a mixture of quasi-metallic and semiconducting SWCNTs, demonstrate quasi-metallic behavior and can be considered as an effective conducting medium.
View Article and Find Full Text PDFAlcohol intoxication has a dangerous effect on human health and is often associated with a risk of catastrophic injuries and alcohol-related crimes. A demand to address this problem adheres to the design of new sensor systems for the real-time monitoring of exhaled breath. We introduce a new sensor system based on a porous hydrophilic layer of submicron silica particles (SiO SMPs) placed on a one-dimensional photonic crystal made of TaO/SiO dielectric layers whose operation relies on detecting changes in the position of surface wave resonance during capillary condensation in pores.
View Article and Find Full Text PDF