Publications by authors named "Nasibeh Zanjirani Farahani"

The analysis and interpretation of cardiac magnetic resonance (CMR) images are often time-consuming. The automated segmentation of cardiac structures can reduce the time required for image analysis. Spatial similarities between different CMR image types were leveraged to jointly segment multiple sequences using a segmentation model termed a multi-image type UNet (MI-UNet).

View Article and Find Full Text PDF

Hypertrophic Cardiomyopathy (HCM) is the most common genetic heart disease in the US and is known to cause sudden death (SCD) in young adults. While significant advancements have been made in HCM diagnosis and management, there is a need to identify HCM cases from electronic health record (EHR) data to develop automated tools based on natural language processing guided machine learning (ML) models for accurate HCM case identification to improve management and reduce adverse outcomes of HCM patients. Cardiac Magnetic Resonance (CMR) Imaging, plays a significant role in HCM diagnosis and risk stratification.

View Article and Find Full Text PDF

Clinicians and staff who work in intense hospital settings such as the emergency department (ED) are under an extended amount of mental and physical pressure every day. They may spend hours in active physical pressure to serve patients with severe injuries or stay in front of a computer to review patients' clinical history and update the patients' electronic health records (EHR). Nurses on the other hand may stay for multiple consecutive days of 9-12 working hours.

View Article and Find Full Text PDF

Background: There is no established screening approach for hypertrophic cardiomyopathy (HCM). We recently developed an artificial intelligence (AI) model for the detection of HCM based on the 12‑lead electrocardiogram (AI-ECG) in adults. Here, we aimed to validate this approach of ECG-based HCM detection in pediatric patients (age ≤ 18 years).

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is the leading cause of sudden cardiac death (SCD) in young adults. Despite the well-known risk factors and existing clinical practice guidelines, HCM patients are underdiagnosed and sub-optimally managed. Developing machine learning models on electronic health record (EHR) data can help in better diagnosis of HCM and thus improve hundreds of patient lives.

View Article and Find Full Text PDF

Manually documented trauma flow sheets contain critical information regarding trauma resuscitations in the emergency department (ED). The American College of Surgeons (ACS) has enforced certain thresholds on trauma surgeons' arrival time to the trauma bay. Due to the complex and fast-paced ED environment, this information can be easily overlooked or erroneously recorded, affecting compliance with ACS standards.

View Article and Find Full Text PDF

Sleep posture has been shown to be important in monitoring health conditions such as congestive heart failure (CHF), sleep apnea, pressure ulcers, and even blood pressure abnormalities. In this paper, we investigate the use of four hydraulic bed transducers placed underneath the mattress to classify different sleep postures. For classification, we employed a simple neural network.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmdlurcsepstr89n0jq9m7vnct459bunp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once