Publications by authors named "Nasib Singh"

Antibiotic resistance in bacteria has emerged as a serious public health threat worldwide. Aquatic environments including irrigation-purpose wastewaters facilitate the emergence and transmission of antibiotic-resistant bacteria and antibiotic resistance genes leading to detrimental effects on human health and environment sustainability. Considering the paramount threat of ever-increasing antibiotic resistance to human health, there is an urgent need for continuous environmental monitoring of antibiotic-resistant bacteria and antibiotic resistance genes in wastewater being used for irrigation in Indian agro-ecosystems.

View Article and Find Full Text PDF

The coronavirus disease 2019, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, appears as a major pandemic having adverse impact on public health and economic activities. Since viral replication in human enterocytes results in its faecal shedding, wastewater surveillance is an ideal, non-invasive, cost-effective and an early warning epidemiological approach to detect the genetic material of SARS-CoV-2. Here, we review techniques for the detection of SARS-CoV-2 in municipal wastewater, and disinfectants used to control viral spread.

View Article and Find Full Text PDF

Wastewater flowing in streams and nallahs across India carries several trace metals, including metalloid arsenic (As), which are considered serious environmental contaminants due to their toxicity, and recalcitrant nature. In this study, we determined the phytoremediation of As by Eichhornia crassipes (Mart.) Solms either alone or in association with plant growth-promoting rhizobacteria.

View Article and Find Full Text PDF

We determined the prevalence and antibiotic susceptibilities patterns of bacterial isolates from pus samples collected from patients in a tertiary care hospital of Punjab, India. was the most prevalent pathogen (51.2%) followed by (21%), (11.

View Article and Find Full Text PDF

Three Arbuscular mycorrhizal fungi (AMF) from Glomus, Acaulospora and Scutellospora, and four plant growth promoting rhizobacteria (PGPR) isolates related to genera Streptomyces, Azotobacter, Pseudomonas and Paenibacillus were found to be effective in phytoremediation of Fe(3+) contaminated soil where Pennisetum glaucum and Sorghum bicolor were growing as host plants. Co-inoculation of AMF and PGPR showed better results in comparison to either, AMF and PGPR under pot conditions. Both AMF and PGPR were able to produce siderophores.

View Article and Find Full Text PDF

The present study was undertaken to investigate the effect of crude seed powder (CSP) and gross saponins extract (GSE) of seeds of Albizia lebbeck on antimicrobial activity by taking two Gram-positive (Staphylococcus aureus and Bacillus cereus), two Gram-negative (Escherichia coli and Salmonella Typhi) bacteria, and two fungi species (Aspergillus niger and Candida butyric) were taken at 25, 50, 100, 250, and 500 µg levels using agar well diffusion method. Zone of inhibition was increased with increasing of concentration of CSP and saponins which indicates that Gram-negative bacteria (E. coli), Gram-positive bacteria (B.

View Article and Find Full Text PDF

In the present study, the diversity of rumen methanogens in crossbred Karan Fries cattle was determined by constructing 16S rRNA and mcrA (methyl coenzyme-M reductase α subunit) gene libraries using specific primers. All thirteen OTUs or phylotypes from 16S rRNA library clustered with order Methanobacteriales, twelve of which aligned with Methanobrevibacter spp., whereas one OTU resemble with Methanosphaera stadtmanae.

View Article and Find Full Text PDF

Rumen microbial community comprising of bacteria, archaea, fungi, and protozoa is characterized not only by the high population density but also by the remarkable diversity and the most complex microecological interactions existing in the biological world. This unprecedented biodiversity is quite far from full elucidation as only about 15-20 % of the rumen microbes are identified and characterized till date using conventional culturing and microscopy. However, the last two decades have witnessed a paradigm shift from cumbersome and time-consuming classical methods to nucleic acid-based molecular approaches for deciphering the rumen microbial community.

View Article and Find Full Text PDF

Glycosyl 1,4-dihydropyridine analogue (2,6-dimethyl-4-(3-O-benzyl-1,2-O-isopropylidene-beta-l-threo pentofuranos-4-yl)-1-phenyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid diethyl ester) synthesized in our laboratory, inhibited Leishmania donovani infection in vitro and in hamsters (Mesocricetus auratus) when administered orally. This analogue is nontoxic, cell-permeable and orally effective. This glycosyl dihydropyridine analogue functioned through arrest of cells in sub-G0/G1-phase, triggering mitochondrial membrane depolarization-mediated programmed cell death of the intracellular amastigotes.

View Article and Find Full Text PDF

Transfection of protozoan parasites, such as Plasmodium, Leishmania, Trypanosoma and Toxoplasma, with various reporter gene constructs, has revolutionized studies to understand the biology of the host-parasite interactions at the cellular level. It has provided impetus to the development of rapid and reliable drug screens both for established drugs and for new molecules against different parasites and other pathogens. Furthermore, reporter genes have proved to be an excellent and promising tool for studying disease progression.

View Article and Find Full Text PDF

Two new compounds 4-methyl-heptadec-6-enoic acid ethyl ester (2) and 3-hydroxy-2,9,11-trimethoxy-5,6-dihydro isoquino[3,2-a]isoquinolinylium (7) were isolated from an ethanolic extract of the stems of Tinospora sinensis, along with six known compounds (1, 3-6 and 8). The structures of new compounds were established on the basis of detailed spectroscopic studies. Compound 7 exhibited the highest in vitro antileishmanial activity against Leishmania donovani promastigotes and intracellular amastigotes, whereas compounds 2, 4, 5 and 6 demonstrated moderate activity.

View Article and Find Full Text PDF

The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. The enzyme pteridine reductase 1 (PTR1) of L. donovani acts as a metabolic bypass for drugs targeting dihydrofolate reductase (DHFR); therefore, for successful antifolate chemotherapy to be developed against Leishmania, it must target both enzyme activities.

View Article and Find Full Text PDF

Objectives: Several Leishmania strains with episomal expression of green fluorescent protein (GFP) require constant drug pressure for its continuous expression and hence limit its use in ex vivo or in vivo systems. The aim of this study was to alleviate this problem by stably integrating the GFP gene into the parasite genome, so as to use these transfectants for ex vivo and in vivo drug screening.

Methods: The GFP gene was integrated downstream of the 18S ribosomal promoter region of Leishmania donovani.

View Article and Find Full Text PDF

In the search of new antileishmanial drugs from marine resources, we have investigated Actinopyga lecanora, a coral reef sea cucumber, for its in vitro and in vivo activities. Methanol extract and n-butanol fraction of A. lecanora exhibited excellent Leishmania donovani inhibition.

View Article and Find Full Text PDF

The chemotherapeutic interventions against visceral leishmaniasis (VL) are limited and facing serious concerns of toxicity, high cost, and emerging drug resistance. There is a greater interest in new drug developments from traditionally used medicinal plants which offers unprecedented diversity in structures and bioactivity. With this rationale, ethanolic extract of Tinospora sinensis Linn and its four fractions were tested in vitro against promastigotes and intracellular amastigotes and in vivo in Leishmania donovani infected hamsters.

View Article and Find Full Text PDF

Susceptibility of animals to infections depends upon various factors including sex and age of the host, which plays a pivotal role. In this communication, we have investigated the "intake" of Leishmania donovani infection in young (3-4 weeks old) and adult (15-16 weeks old) golden hamsters. The splenic parasite load in young hamsters on day 15 post infection (p.

View Article and Find Full Text PDF

In this study, we are reporting antileishmanial activity of a marine sponge Haliclona exigua, belonging to phylum Porifera. The crude methanol extract and its three fractions were tested both in vitro and in vivo. The crude extract exerted almost complete inhibition of promastigotes at 50 microg/ml and 76.

View Article and Find Full Text PDF

Nineteen compounds of various classes, such as flavonoid glycosides, pterocarpanoids, lipids, glycolipids, and alkaloids, were isolated and identified from the Desmodium gangeticum whole plant. Aminoglucosyl glycerolipid (8) is reported here for the first time. Its structure has been elucidated by spectroscopic and degradation studies.

View Article and Find Full Text PDF

Ever since their discovery about 60 years ago as therapeutic agent for visceral leishmaniasis (VL) or kala-azar, pentavalent antimonials (Sb(v)) have remained the first line treatment of choice all over the world including India. But recently, the number of kala-azar patients unresponsive to sodium stibogluconate (SSG) therapy, is steadily increasing in India. In this study, three clinical isolates, of which two were from SSG unresponsive and one from SSG responsive patients were evaluated for their infectivity and for their chemotherapeutic responses in vitro (macrophage-amastigote system) and in vivo (in hamsters).

View Article and Find Full Text PDF

Crude ethanolic extract of Indian medicinal plant, Desmodium gangeticum (A001) and its three fractions-hexane (F002), n-butanol (F003) and aqueous (F004) were evaluated chemoprophylactically and chemotherapeutically against experimental visceral leishmaniasis in hamsters. Ethanolic extract showed 41.2+/-5.

View Article and Find Full Text PDF

The characteristic feature of visceral leishmaniasis (VL) is the profound impairment of immune system of the infected host, which contributes significantly to the partial success of antileishmanial chemotherapy. Since in VL, cure is the combinatorial effect of drug and immune status of the host, the rationale approach towards antileishmanial chemotherapy would be to potentiate the immune functioning of the host to extract desired results. Towards this direction several rationally designed analogues of human beta-casein fragment (54-59) were evaluated for their ability to stimulate the non-specific resistance in hamsters against Leishmania donovani infection.

View Article and Find Full Text PDF