ACS Appl Mater Interfaces
October 2024
Hepatocellular carcinoma (HCC) is a highly malignant tumor that is resistant to chemotherapy and immunotherapy. Icaritin (ICT), a traditional Chinese medicine, has been reported as an immunoregulatory agent for treating advanced unresectable HCC. ICT induces mitophagy to cause immunogenic cell death (ICD); however, the poor bioavailability of ICT limits its therapeutic efficacy and clinical use.
View Article and Find Full Text PDFExtracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) for the treatment of bone defects have been widely reported as a cell-free therapy because of their appropriate stability and biocompatibility. However, EV isolation is expensive and time-consuming. We developed a method of modifying EVs derived from bone marrow MSCs (BMSCs) via the cationic polymer (ERP) with characteristics of charge reversal and esterase response (ERP-EVs).
View Article and Find Full Text PDFFerroptosis has garnered attention as a potential approach to fight against cancer, which is characterized by the iron-driven buildup of lipid peroxidation. However, the robust defense mechanisms against intracellular ferroptosis pose significant challenges to its effective induction. In this paper, an effective gene delivery vehicle was developed to transport solute carrier family 7 member 11 (SLC7A11) shRNA (shSLC7A11), which downregulates the expression of the channel protein SLC7A11 and glutathione peroxidase 4 (GPX4), evoking a surge in reactive oxygen species production, iron accumulation, and lipid peroxidation in hepatocellular carcinoma (HCC) cells, and subsequently leading to ferroptosis.
View Article and Find Full Text PDFBackground: Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous.
View Article and Find Full Text PDFThe efficacy of HCC (hepatocellular carcinoma) immunotherapy is hindered by the limited reactivity and short duration of tumor-infiltrating T cells. These deficiencies may be ascribed to the proliferative ability of T cells. The primary objective of this study was to identify the key factor regulating tumor-infiltrating lymphocytes (TIL) proliferation within the HCC microenvironment.
View Article and Find Full Text PDFIonizable cationic lipids are recognized as an essential component of lipid nanoparticles (LNPs) for messenger RNA (mRNA) delivery but can be confounded by low lipoplex stability with mRNA during storage and in vivo delivery. Herein, the rational design and combinatorial synthesis of esterase-triggered decationizable quaternium lipid-like molecules (lipidoids) are reported to develop new LNPs with high delivery efficiency and improved storage stability. This top lipidoid carries positive charges at the physiological condition but promptly acquires negative charges in the presence of esterase, thus permitting stable mRNA encapsulation during storage and in vivo delivery while balancing efficient mRNA release in the cytosol.
View Article and Find Full Text PDFPeritoneal metastasis is very common in gastrointestinal, reproductive, and genitourinary tract cancers in late stages or postsurgery, causing poor prognosis, so effective and nontoxic prophylactic strategies against peritoneal metastasis are highly imperative. Herein, we demonstrate the first gene transfection as a nontoxic prophylaxis preventing peritoneal metastasis or operative metastatic dissemination. Lipopolyplexes of TNF-related-apoptosis-inducing-ligand (TRAIL) transfected peritonea and macrophages to express TRAIL for over 15 days.
View Article and Find Full Text PDFWith the improvement of the average life expectancy and increasing incidence of obesity, the burden of liver disease is increasing. Liver disease is a serious threat to human health. Currently, liver transplantation is the only effective treatment for end-stage liver disease.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC), one of the worst prognosis types of tumors, is characterized by dense extracellular matrix, which compresses tumor vessels and forms a physical barrier to inhibit therapeutic drug penetration and efficacy. Herein, losartan, an antihypertension agent, is applied as a tumor stroma modulator and developed into a nanosystem. A series of lipophilic losartan prodrugs are constructed by esterification of the hydroxyl group on losartan to fatty acids.
View Article and Find Full Text PDFCationic polymers dynamically complex DNA into complexes (polyplexes). So, upon dilution, polyplexes easily dissociate and lose transfection ability, limiting their in vivo systemic gene delivery. Herein, it is found that polyplex's stability and endocytosis pathway determine its transfection dose-dependence.
View Article and Find Full Text PDFAnti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) antibodies are currently used in the clinic to interupt the PD-1/PD-L1 immune checkpoint, which reverses T cell dysfunction/exhaustion and shows success in treating cancer. Here, we report a histone demethylase inhibitor, 5-carboxy-8-hydroxyquinoline (IOX1), which inhibits tumour histone demethylase Jumonji domain-containing 1A (JMJD1A) and thus downregulates its downstream β-catenin and subsequent PD-L1, providing an antibody-independent paradigm interrupting the PD-1/PD-L1 checkpoint. Synergistically, IOX1 inhibits cancer cells' P-glycoproteins (P-gp) through the JMJD1A/β-catenin/P-gp pathway and greatly enhances doxorubicin (DOX)-induced immune-stimulatory immunogenic cell death.
View Article and Find Full Text PDFEffective vaccines are vital to fight against the COVID-19 global pandemic. As a critical component of a subunit vaccine, the adjuvant is responsible for strengthening the antigen-induced immune responses. Here, we present a new nanovaccine that comprising the Receptor-Binding Domain (RBD) of spike protein and the manganese nanoadjuvant (MnARK), which induces humoral and cellular responses.
View Article and Find Full Text PDFAdipocytes are the primary cellular components within the tumor microenvironment (TME) of triple-negative breast cancer (TNBC). Increasing evidence suggests that tumor-associated adipocytes (TAAs) can aggravate tumor progression, exacerbate the immunosuppressive TME and compromise therapeutic efficacy. In this study, the biological effect of TAAs within the breast cancer TME is first investigated, and the C-C Motif Chemokine Ligand 2 (CCL2) which is mainly secreted by TAAs in the extracellular environment is identified as the key mediator.
View Article and Find Full Text PDFProgrammed cell death-ligand 1 (PD-L1)-based immune checkpoint blockade therapy using the anti-PD-L1 antibody is effective for a subset of patients with advanced metastatic melanoma but about half of the patients do not respond to the therapy because of the tumor immunosuppressive microenvironment. Immunogenic cell death (ICD) induced by cytotoxins such as doxorubicin (DOX) allows damaged dying tumor cells to release immunostimulatory danger signals to activate dendritic cells (DCs) and T-cells; however, DOX also makes tumor cells upregulate PD-L1 expression and thus deactivate T-cells via the PD-1/PD-L1 pathway. Herein, we show that celastrol (CEL) induced not only strong ICD but also downregulation of PD-L1 expression of tumor cells.
View Article and Find Full Text PDFInterleukin 12 (IL12) is a potent pro-inflammatory chemokine with multifunction, including promoting cytotoxic T-cell-mediated killing of cancer cells. IL12-based cancer gene therapy can overcome IL12's life-threatening adverse effects, but its clinical translation has been limited by the lack of systemic gene-delivery vectors capable of efficiently transfecting tumors to produce sufficient local IL12. Macrophages inherently excrete IL12, and tumor-associated macrophages (TAMs) are the major tumor component taking up a large fraction of the vectors arriving in the tumor.
View Article and Find Full Text PDFJ Control Release
July 2020
Triple negative breast cancer (TNBC) does not respond to checkpoint blockade immunotherapy as a result of immunosuppressive tumor microenvironment. To remodel the tumor microenvironment, we developed a liposome formulation to deliver a potential immunogenic cell death (ICD) inducing agent, 17-(allylamino)-17-demethoxygeldanamycin (17-AAG, or tanespimycin), in a tumor targeted manner to reverse the immunosuppressive microenvironment and facilitate the checkpoint blockade immunotherapy. The 17-AAG liposomes was prepared by thin film dispersion methods.
View Article and Find Full Text PDFNanotechnology-based drug delivery platforms have been explored for cancer treatments and resulted in several nanomedicines in clinical uses and many in clinical trials. However, current nanomedicines have not met the expected clinical therapeutic efficacy. Thus, improving therapeutic efficacy is the foremost pressing task of nanomedicine research.
View Article and Find Full Text PDFIn the last 2-3 decades, gene therapy represented a promising option for hepatocellular carcinoma (HCC) treatment. However, the design of safe and efficient gene delivery systems is still one of the major challenges that require solutions. In this study, we demonstrate a versatile method for covalent conjugation of glycyrrhizin acid (GL) or glycyrrhetinic acid (GA) to increase the transfection efficiency of Polyethyleneimine (PEI, Mw 1.
View Article and Find Full Text PDFDesmoplastic tumors are normally resistant to nanoparticle-based chemotherapy due to dense stroma and limited particle permeability inside the tumor. Herein, we reported that hydralazine (HDZ)-an antihypertension vasodilator-would dramatically promote nanoparticle penetration in advanced desmoplastic tumors. First, a HDZ-liposome system was developed for tumor-selective delivery of HDZ.
View Article and Find Full Text PDFGene therapy has demonstrated effectiveness in many genetic diseases, as evidenced by recent clinical applications. Viral vectors have been extensively tested in clinical gene-therapy trials, but nonviral vectors such as cationic polymers or lipids are much less used due to their lower gene-transfection efficiencies. However, the advantages of nonviral vectors, such as easily tailored structures, nonimmunogenetics, and relatively low cost, still drive great efforts to improve their transfection efficiencies.
View Article and Find Full Text PDFGene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level.
View Article and Find Full Text PDFCurrent cancer nanomedicines can only mitigate adverse effects but fail to enhance therapeutic efficacies of anticancer drugs. Rational design of next-generation cancer nanomedicines should aim to enhance their therapeutic efficacies. Taking this into account, this review first analyzes the typical cancer-drug-delivery process of an intravenously administered nanomedicine and concludes that the delivery involves a five-step CAPIR cascade and that high efficiency at every step is critical to guarantee high overall therapeutic efficiency.
View Article and Find Full Text PDF