Publications by authors named "Naseralla Jasim"

The syntheses of three series of complexes designed with self-complementary motifs for formation of halogen bonds between an iodotetrafluorophenyl ligand and a halide ligand at square-planar nickel are reported, allowing structural comparisons of halogen bonding between all four halides CFI···X-Ni (X = F, Cl, Br, I). In the series -[NiX(2,3,5,6-CFI)(PEt)] and -[NiX(2,3,4,5-CFI)(PEt)] (X = F, Cl, Br, I) , the iodine substituent on the benzene ring was positioned and to the metal, respectively. The phosphine substituents were varied in the series, -[NiX(2,3,5,6-CFI)(PEtPh)] (X = F, I) .

View Article and Find Full Text PDF

The association constants and enthalpies for the binding of hydrogen bond donors to group 10 transition metal complexes featuring a single fluoride ligand (trans-[Ni(F)(2-C5NF4)(PR3)2], R = Et 1a, Cy 1b, trans-[Pd(F)(4-C5NF4)(PCy3)2] 2, trans-[Pt(F){2-C5NF2H(CF3)}(PCy3)2] 3 and of group 4 difluorides (Cp2MF2, M = Ti 4a, Zr 5a, Hf 6a; Cp*2MF2, M = Ti 4b, Zr 5b, Hf 6b) are reported. These measurements allow placement of these fluoride ligands on the scales of organic H-bond acceptor strength. The H-bond acceptor capability β (Hunter scale) for the group 10 metal fluorides is far greater (1a 12.

View Article and Find Full Text PDF

Pt(PCyp3)2 (Cyp = cyclopentyl) undergoes C-O oxidative addition with 2,3,5,6-tetrafluoro-4-methoxypyridine, pentafluoroanisole, 2,3,5,6-tetrafluoroanisole and 2,3,6-trifluoroanisole yielding platinum methyl derivatives. The reactions occur in preference to C-H or C-F activation.

View Article and Find Full Text PDF

A study is presented of the thermodynamics of the halogen-bonding interaction of C(6)F(5)I with a series of structurally similar group 10 metal fluoride complexes trans-[Ni(F)(2-C(5)NF(4))(PCy(3))(2)] (2), trans-[Pd(F)(4-C(5)NF(4))(PCy(3))(2)] (3), trans-[Pt(F){2-C(5)NF(2)H(CF(3))}(PR(3))(2)] (4a, R = Cy; 4bR = iPr) and trans-[Ni(F){2-C(5)NF(2)H(CF(3))}(PCy(3))(2)] (5a) in toluene solution. (19)F NMR titration experiments are used to determine binding constants, enthalpies and entropies of these interactions (2.4 ≤ K(300) ≤ 5.

View Article and Find Full Text PDF

In this Account, we describe the transition metal-mediated cleavage of C-F and C-H bonds in fluoroaromatic and fluoroheteroaromatic molecules. The simplest reactions of perfluoroarenes result in C-F oxida tive addition, but C-H activation competes with C-F activation for partially fluorinated molecules. We first consider the reactivity of the fluoroaromatics toward nickel and platinum complexes, but extend to rhenium and rhodium where they give special insight.

View Article and Find Full Text PDF

A survey of computed mechanisms for C-F bond activation at the 4-position of pentafluoropyridine by the model zero-valent bis-phosphine complex, [Pt(PH3)(PH2Me)], reveals three quite distinct pathways leading to square-planar Pt(II) products. Direct oxidative addition leads to cis-[Pt(F)(4-C5NF4)(PH3)(PH2Me)] via a conventional 3-center transition state. This process competes with two different phosphine-assisted mechanisms in which C-F activation involves fluorine transfer to a phosphorus center via novel 4-center transition states.

View Article and Find Full Text PDF

The organometallic compound trans-(tetrafluoropyrid-2-yl)bis(triethylphosphine)-fluoronickel(II) (NiF) is shown to serve as a strong hydrogen bond and halogen bond acceptor in solution via intermolecular interactions with the fluoride ligand. The nature of the interactions has been confirmed by multinuclear NMR spectroscopy. Experimental binding constants, enthalpies, and entropies of interaction with hydrogen-bond-donor indole and halogen-bond-donor iodopentafluorobenzene have been determined by 19F NMR titration.

View Article and Find Full Text PDF

Experimental and computational studies are reported on half-sandwich rhodium complexes that undergo B-H bond activation with pinacolborane (HBpin = HB(OCMe2CMe2O)). The photochemical reaction of [Rh(eta5-C5H5)(R,R-phospholane)(C2H4)] 3 (phospholane = PhP(CHMeCH2CH2CHMe)) with HBpin generates the boryl hydride in two distinguishable isomers [(SRh)-Rh(eta5-C5H5)(Bpin)(H)(R,R-phospholane)] 5a and [(RRh)-Rh(eta5-C5H5)(Bpin)(H)(R,R-phospholane)] 5b that undergo intramolecular exchange. The presence of a chiral phosphine allowed the determination of the interconversion rates (epimerization) by 1D 1H EXSY spectroscopy in C6D6 solution yielding DeltaH = 83.

View Article and Find Full Text PDF