(1) Toll-like receptors (TLR) are a family of pattern recognition receptors that sense distinct molecular patterns of microbial origin. Although the immune cell composition of camel milk has been recently described, host-pathogen interaction studies in the camel mammary gland are still scarce. The present study aimed to use a whole milk stimulation assay for investigating the modulatory effect of selected Toll-like receptor (TLR) ligands on the phenotype and function of milk immune cells.
View Article and Find Full Text PDFRespiratory tract infections are among the most common infections in dromedary camels, with a high impact on animal health, production, and welfare. Tissue-specific distribution of immune cells is one of the important factors that influence the nature and outcome of the immune response to pathogens. Several protocols have recently been described for the flow cytometric analysis of immune cells in the lung tissue of several species.
View Article and Find Full Text PDFBackground And Aim: Anticoagulants with different modes of action are used in the collection of camel blood samples. In the innate immune response, camel neutrophils and monocytes can play several roles during infection and inflammation. For anticoagulants ethylenediaminetetraacetic acid (EDTA) and heparin, research has described their effects on different parameters of the immune system.
View Article and Find Full Text PDFEndometritis represents the main cause of reproductive failure in dromedary camels. In dromedary camels, associations between endometritis-causing pathogen-species, disease severity, and systemic changes in the immune system have not been evaluated. In the current study, there was use of flow cytometry and immunofluorescence of membrane proteins for the evaluation of leukocyte subsets and the cellular phenotype in blood of camels with clinical endometritis and evaluations of associations with disease severity and endometritis-causing pathogens.
View Article and Find Full Text PDFBackground: In human and different animal species, blood monocytes are classified based on their expression pattern of different monocytic markers into phenotypically and functionally different subsets. In the current study, we used flow cytometry and monoclonal antibodies to CD172a, CD14, CD163 and MHCII to identify monocyte subsets in peripheral blood of dromedary camels.
Results: Based on CD14, CD163 and MHCII expression, camel CD172a + monocytes were divided into three subsets: The major subpopulation of camel monocytes (mo-I) showed high expression of CD14 and CD163, but low expression of MHCII.