The delivery of nanoparticles to tumors has been shown preclinically to be improved by microbubble-mediated ultrasound. However, the mechanisms and biological effects are not fully understood. In this study, we explored the influence of the tumor microenvironment on nanoparticle uptake and microdistribution both with and without ultrasound and microbubble treatment.
View Article and Find Full Text PDFObjective: This paper describes the relationship between elastic tissue properties and strain and presents an initial investigation of pulse-echo ultrasound to measure two uncorrelated elastic parameters in tissue-mimicking phantoms. The two elastic parameters are the shear modulus, related to deformation of shape, and what we in the paper define as the nonlinear compressibility, related to deformation of volume.
Methods: We prepared tissue-mimicking phantoms containing lesions of variable shear modulus and variable nonlinear compressibility.
This paper presents an initial investigation into the use of dual frequency pulse-echo ultrasound, second order ultrasound field (SURF) imaging, to measure the fat content of soft tissues. The SURF imaging method was used to measure the non-linear bulk elasticity (NBE) of several fatty phantoms that were created by mixing different mass fractions of soybean oil uniformly into agar phantoms. The median of the measured NBE within the estimation region was found to increase linearly with fat mass fraction (R = 0.
View Article and Find Full Text PDF