Sphingolipids (SLs) are essential to fungal survival and represent a major class of structural and signaling lipids. Unique SL structures and their biosynthetic enzymes in filamentous fungi make them an ideal drug target. Several studies have contributed towards the functional characterization of specific SL metabolism genes, which have been complemented by advanced lipidomics methods which allow accurate identification and quantification of lipid structures and pathway mapping.
View Article and Find Full Text PDFMany azole-resistant (AR) clinical isolates of Candida albicans display increased expression of the drug transporters CDR1 and CDR2. In this study, we evaluate the molecular mechanisms that contribute to the maintenance of constitutively high CDR1 transcript levels in two matched pairs of azole-susceptible (AS) and AR clinical isolates of C. albicans.
View Article and Find Full Text PDFThe molecular basis of the broad substrate recognition and the transport of substrates by Cdr1p, a major drug efflux protein of Candida albicans, is not well understood. To investigate the role of transmembrane domains and nucleotide-binding domains (NBDs) of Cdr1p in drug transport, two sets of protein chimeras were constructed: one set between homologous regions of Cdr1p and the non-drug transporter Cdr3p, and another set consisting of Cdr1p variants comprising either two N- or two C-terminal NBDs of Cdr1p. The replacement of either the N- or the C-terminal half of Cdr1p by the homologous segments of Cdr3p resulted in non-functional recombinant strains expressing chimeric proteins.
View Article and Find Full Text PDFIn the present study we describe the isolation and functional analysis of a sphingolipid biosynthetic gene, IPT1, of Candida albicans. The functional consequence of the disruption of both alleles of IPT1 was confirmed by mass analysis of its sphingolipid composition. The disruption of both alleles or a single allele of IPT1 did not lead to any change in growth phenotype or total sphingolipid, ergosterol, or phospholipid content of the mutant cells.
View Article and Find Full Text PDFObjectives: To investigate the role of transmembrane segment 11 (TMS11) of Candida albicans drug resistance protein (Cdr1p) in drug extrusion.
Methods: We replaced each of the 21 putative residues of TMS11 with alanine by site-directed mutagenesis. The Saccharomyces cerevisiae AD1-8u(-) strain was used to overexpress the green fluorescent protein tagged wild-type and mutant variants of TMS11 of Cdr1p.
Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans.
View Article and Find Full Text PDFCDR1 gene encoding an ATP-driven drug extrusion pump has been implicated in the development of azole-resistance in Candida albicans. Although the upregulation of CDR1 expression by various environmental factors has been documented, the molecular mechanism underlying such process is poorly understood. We have demonstrated earlier that the CDR1 promoter encompasses a large number of cis-regulatory elements, presumably mediating its response to various drugs.
View Article and Find Full Text PDFWe have earlier shown that transcriptional activation of the Candida drug resistance gene, CDR1, is linked to various stresses wherein a proximal promoter (-345 bp from the transcription start point (TSP)) was found to be predominantly more responsive. In this study we have examined basal expression of the CDR1 proximal promoter by employing a Renilla luciferase reporter system. We observed that upon sequential deletion of the proximal promoter, there was modulation in basal reporter activity.
View Article and Find Full Text PDF