Cannabigerol (CBG), a non-psychoactive cannabinoid found in cannabis, has emerged as a promising therapeutic agent with a diverse range of potential applications. Unlike its well-known counterpart tetrahydrocannabinol (THC), CBG does not induce intoxication, making it an attractive option in the clinic. Recent research has shed light on CBG's intriguing molecular mechanisms, highlighting its potential to modulate multiple physiological processes.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD.
View Article and Find Full Text PDFVasculopathies occur 15 years earlier in individuals with diabetes mellitus (DM) as compared to those without, but the underlying mechanisms driving diabetic vasculopathy remain incompletely understood. Endothelial cells (ECs) and macrophages (MΦ) are critical players in vascular wall and their crosstalk is crucial in diabetic vasculopathy. In diabetes, EC activation enables monocyte recruitment, which transmigrate into the intima and differentiate into macrophages (MΦ).
View Article and Find Full Text PDFChromatin-associated RNAs (caRNAs) form a relatively poorly recognized layer of the epigenome. The caRNAs reported to date are transcribed from the nuclear genome. Here, leveraging a recently developed assay for detection of caRNAs and their genomic association, we report that mitochondrial RNAs (mtRNAs) are attached to the nuclear genome and constitute a subset of caRNA, thus termed mt-caRNA.
View Article and Find Full Text PDFMethodist Debakey Cardiovasc J
December 2023
RNA plays a fundamental role in the organization of chromatin as well as the regulation of gene expression. Although the chromatin is pervasively attached by both coding and noncoding RNAs, the impact of these chromatin-associated RNAs (caRNAs) on gene expression and cellular functions and their underlying mechanisms have just begun to be unraveled. One approach to understand the potential mechanism of gene regulation by caRNAs is to identify the caRNA-associated genomic regions.
View Article and Find Full Text PDFImpaired angiogenesis in diabetes is a key process contributing to ischemic diseases such as peripheral arterial disease. Epigenetic mechanisms, including those mediated by long noncoding RNAs (lncRNAs), are crucial links connecting diabetes and the related chronic tissue ischemia. Here we identify the lncRNA that enhances endothelial nitric oxide synthase (eNOS) expression (LEENE) as a regulator of angiogenesis and ischemic response.
View Article and Find Full Text PDFVascular endothelial cells (ECs) play a pivotal role in whole body homeostasis. Recent advances have revealed enhancer-associated long non-coding RNAs (lncRNAs) as essential regulators in EC function. We investigated LINC00607, a super enhancer-derived lncRNA (SE-lncRNA) in human arteries with an emphasis on ECs.
View Article and Find Full Text PDFEndothelial cells (ECs) are crucial for vascular and whole-body function through their dynamic response to environmental cues. Elucidating the transcriptome and epigenome of ECs is paramount to understanding their roles in development, health, and disease, but is limited in the availability of isolated primary cells. Recent technologies have enabled the high-throughput profiling of EC transcriptome and epigenome, leading to the identification of previously unknown EC cell subpopulations and developmental trajectories.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2022
Angiogenic VEGF isoforms are upregulated in diabetic retinopathy (DR), driving pathological growth and fluid leakage. Serine-arginine-rich protein kinase-1 (SRPK1) regulates VEGF splicing, and its inhibition blocks angiogenesis. We tested the hypothesis that SRPK1 is activated in diabetes, and an SRPK1 inhibitor (SPHINX31) switches VEGF splicing in DR and prevents increased vascular permeability into the retina.
View Article and Find Full Text PDFIn the retina EC dysfunction and angiogenesis are driven by an altered microenvironment e.g., diabetes, leading to hypoxia and inflammation in the retinal layers, resulting in excessive vascular leakage and growth.
View Article and Find Full Text PDFSignificantly reduced levels of the anti-inflammatory gaseous transmitter hydrogen sulfide (HS) are observed in diabetic patients and correlate with microvascular dysfunction. HS may protect the microvasculature by preventing loss of the endothelial glycocalyx. We tested the hypothesis that HS could prevent or treat retinal microvascular endothelial dysfunction in diabetes.
View Article and Find Full Text PDFObjective: The gold standard for measuring blood-retinal barrier permeability is the Evans blue assay. However, this technique has limitations in vivo, including non-specific tissue binding and toxicity. This study describes a non-toxic, high-throughput, and cost-effective alternative technique that minimizes animal usage.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2019
The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange.
View Article and Find Full Text PDF