At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2013
Purpose: Liquid crystal display (LCD) of mammograms provides soft-copy results that differ in conventional and phase contrast mammography (PCM). PCM potentially offers the highest quality of sharpness and graininess, an edge emphasis effect on the object, and the highest image resolution. However, when the image is displayed on an LCD, the resolution depends on the pixel pitch and the PCM image data must be diminished.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2009
Purpose: Many shrinkage functions have been introduced and applied for the wavelet shrinkage denoising of computed tomography (CT) images. However, these functions have problems in continuity of functions and cause "shrinkage artifacts". Therefore, we designed a new and smooth shrinkage function using noise distribution.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
December 2005
Multidetector-row computed tomography (MDCT) has dramatically increased the speed of scanning, and allows high-resolution imaging compared with conventional single detector-row CT (SDCT). However, the use MDCT makes use of an increase in volume scanning, and causes a simultaneous increase in radiation dose to the patient. Thus, the radiation dose from the X-ray CT has become a problem in recent years.
View Article and Find Full Text PDFThe relative electron density resolution was discussed by the Wiener spectrum in the heavy ion CT image. The two-dimensional (2D) Wiener spectrum in the CT image was obtained from the one-dimensional (1D) Wiener spectrum of the measured residual range distribution of the water phantom for a single projection angle, and the relative electron density resolution in the CT image was calculated from the 2D Wiener spectrum. To examine the usefulness of this method, the relative electron density resolution was also estimated by other two methods; the calculation using the Wiener spectrum of the reconstructed image of the water phantom, and the estimation by the reconstructed image of the electron density resolution phantom.
View Article and Find Full Text PDF