A synchrotron-based technique using Compton scattering imaging is presented. This technique has been applied to a coin battery (CR2023), and the cross-sectional image has been obtained in 34 ms without sample rotation. A three-dimensional image of the whole structure has been reconstructed from 74 cross-sectional images taken consecutively by scanning the incident, wide X-ray beam along one direction.
View Article and Find Full Text PDFThe electrification of heavy-duty transport and aviation will require new strategies to increase the energy density of electrode materials. The use of anionic redox represents one possible approach to meeting this ambitious target. However, questions remain regarding the validity of the O/O oxygen redox paradigm, and alternative explanations for the origin of the anionic capacity have been proposed, because the electronic orbitals associated with redox reactions cannot be measured by standard experiments.
View Article and Find Full Text PDFA dedicated apparatus has been developed for studying structural changes in amorphous and disordered crystalline materials substantially in real time. The apparatus, which can be set up on beamlines BL04B2 and BL08W at SPring-8, mainly consists of a large two-dimensional flat-panel detector and high-energy X-rays, enabling total scattering measurements to be carried out for time-resolved pair distribution function (PDF) analysis in the temperature range from room temperature to 873 K at pressures of up to 20 bar. For successful time-resolved analysis, a newly developed program was used that can monitor and process two-dimensional image data simultaneously with the data collection.
View Article and Find Full Text PDFWe present an X-ray Compton scattering study on aqueous trimethylamine N-oxide (TMAO) and guanidine hydrochloride solutions (GdnHCl) as a function of temperature. Independent from the concentration of the solvent, Compton profiles almost resemble results for liquid water as a function of temperature. However, the number of hydrogen bonds per water molecule extracted from the Compton profiles suggests a decrease of hydrogen bonds with rising temperature for all studied samples, and the differences between water and the solutions are weak.
View Article and Find Full Text PDFUnusual electronic phase transitions in the A-site ordered perovskites LnCu3Fe4O12 (Ln: trivalent lanthanide ion) are investigated. All LnCu3Fe4O12 compounds are in identical valence states of Ln(3+)Cu(2+)3Fe(3.75+)4O12 at high temperature.
View Article and Find Full Text PDFA novel iron perovskite YCu3Fe4O12 was synthesized under high pressure and high temperature of 15 GPa and 1273 K. Synchrotron X-ray and electron diffraction measurements have demonstrated that this compound crystallizes in the cubic AA'3B4O12-type perovskite structure (space group Im3, No. 204) with a lattice constant of a = 7.
View Article and Find Full Text PDFIn oxides, the substitution of non-oxide anions (F(-),S(2-),N(3-) and so on) for oxide introduces many properties, but the least commonly encountered substitution is where the hydride anion (H(-)) replaces oxygen to form an oxyhydride. Only a handful of oxyhydrides have been reported, mainly with electropositive main group elements or as layered cobalt oxides with unusually low oxidation states. Here, we present an oxyhydride of the perhaps most well-known perovskite, BaTiO(3), as an O(2-)/H(-) solid solution with hydride concentrations up to 20% of the anion sites.
View Article and Find Full Text PDF