Publications by authors named "Naroa Sadaba"

Mechanical deformation of polymer networks causes molecular-level motion and bond scission that ultimately lead to material failure. Mitigating this strain-induced loss in mechanical integrity is a significant challenge, especially in the development of active and shape-memory materials. We report the additive manufacturing of mechanical metamaterials made with a protein-based polymer that undergo a unique stiffening and strengthening behavior after shape recovery cycles.

View Article and Find Full Text PDF

Unlike human intestines, which are long, hollow tubes, the intestines of sharks and rays contain interior helical structures surrounding a cylindrical hole. One function of these structures may be to create asymmetric flow, favoring passage of fluid down the digestive tract, from anterior to posterior. Here, we design and 3D print biomimetic models of shark intestines, in both rigid and deformable materials.

View Article and Find Full Text PDF

In this work, we introduce a 3D-printable virus-like particle (VLP)-enhanced cross-linked biopolymer system. VLPs displaying surface-available acrylate groups were prepared through aza-Michael addition to serve as resins. The VLP resins were then photopolymerized into a poly(ethylene glycol) diacrylate (PEGDA) network following DLP 3D printing.

View Article and Find Full Text PDF

4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed.

View Article and Find Full Text PDF

3D-printed engineered living materials (ELM) are promising bioproduction platforms for agriculture, biotechnology, sustainable energy, and green technology applications. However, the design of these platforms faces several challenges, such as the processability of these materials into complex form factors and control over their mechanical properties. Herein, ELM are presented as 3D-printed bioreactors with arbitrary shape geometries and tunable mechanical properties (moduli and toughness).

View Article and Find Full Text PDF

High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing.

View Article and Find Full Text PDF

The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients' needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties.

View Article and Find Full Text PDF

This work reports the versatility of polydopamine (PD) when applied as a particle coating in a composite of polylactide (PLA). Polydopamine was observed to increase the particle-matrix interface strength and facilitate the adsorption of drugs to the material surface. Here, barium sulfate radiopaque particles were functionalized with polydopamine and integrated into a polylactide matrix, leading to the formulation of a biodegradable and X-ray opaque material with enhanced mechanical properties.

View Article and Find Full Text PDF

There is a great interest in incorporating catechol moieties into polymers in a controlled manner due to their interesting properties, such as the promotion of adhesion, redox activity or bioactivity. One possibility is to incorporate the catechol as end-group in a polymer chain using a functional initiator by means of controlled polymerization strategies. Nevertheless, the instability of catechol moieties under oxygen and basic pH requires tedious protection and deprotection steps to perform the polymerization in a controlled fashion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont0lgmbj2rjcf5mnmldgsm5vg67h4k2uo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once