Publications by authors named "Narmin Ghaffari Laleh"

Medical image classification requires labeled, task-specific datasets which are used to train deep learning networks de novo, or to fine-tune foundation models. However, this process is computationally and technically demanding. In language processing, in-context learning provides an alternative, where models learn from within prompts, bypassing the need for parameter updates.

View Article and Find Full Text PDF

Background: Puumala hantavirus (PUUV) causes nephropathia epidemica (NE), an endemic form of transient acute renal injury (AKI). Serological testing is the mainstay of diagnosis. It was the aim of the present study to assist decision-making for serological testing by constructing a simple tool that predicts the likelihood of PUUV positivity.

View Article and Find Full Text PDF

Artificial intelligence (AI) has been commoditized. It has evolved from a specialty resource to a readily accessible tool for cancer researchers. AI-based tools can boost research productivity in daily workflows, but can also extract hidden information from existing data, thereby enabling new scientific discoveries.

View Article and Find Full Text PDF

Background: Artificial intelligence (AI) has numerous applications in pathology, supporting diagnosis and prognostication in cancer. However, most AI models are trained on highly selected data, typically one tissue slide per patient. In reality, especially for large surgical resection specimens, dozens of slides can be available for each patient.

View Article and Find Full Text PDF
Article Synopsis
  • Primary liver cancer can originate from two cell types, leading to different types of tumors: hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICCA), with combined tumors (cHCC-CCA) displaying mixed characteristics.
  • Researchers utilized deep learning to categorize tumors in a study involving 405 cHCC-CCA patients, successfully distinguishing between HCC and ICCA types.
  • This deep learning method showed potential for enhancing treatment strategies and improving patient outcomes for those with complex liver cancers.
View Article and Find Full Text PDF

Large language models (LLMs) are artificial intelligence (AI) tools specifically trained to process and generate text. LLMs attracted substantial public attention after OpenAI's ChatGPT was made publicly available in November 2022. LLMs can often answer questions, summarize, paraphrase and translate text on a level that is nearly indistinguishable from human capabilities.

View Article and Find Full Text PDF

Several mathematical models to predict tumor growth over time have been developed in the last decades. A central aspect of such models is the interaction of tumor cells with immune effector cells. The Kuznetsov model (Kuznetsov et al.

View Article and Find Full Text PDF

Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use.

View Article and Find Full Text PDF

Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative information from digital histopathology images. AI is expected to reduce workload for human experts, improve the objectivity and consistency of pathology reports, and have a clinical impact by extracting hidden information from routinely available data. Here, we describe how AI can be used to predict cancer outcome, treatment response, genetic alterations and gene expression from digitized histopathology slides.

View Article and Find Full Text PDF

Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data.

View Article and Find Full Text PDF

The text-guided diffusion model GLIDE (Guided Language to Image Diffusion for Generation and Editing) is the state of the art in text-to-image generative artificial intelligence (AI). GLIDE has rich representations, but medical applications of this model have not been systematically explored. If GLIDE had useful medical knowledge, it could be used for medical image analysis tasks, a domain in which AI systems are still highly engineered towards a single use-case.

View Article and Find Full Text PDF

Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label.

View Article and Find Full Text PDF

Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance.

View Article and Find Full Text PDF

Artificial intelligence (AI) is widely used to analyze gastrointestinal (GI) endoscopy image data. AI has led to several clinically approved algorithms for polyp detection, but application of AI beyond this specific task is limited by the high cost of manual annotations. Here, we show that a weakly supervised AI can be trained on data from a clinical routine database to learn visual patterns of GI diseases without any manual labeling or annotation.

View Article and Find Full Text PDF

In the last four years, advances in Deep Learning technology have enabled the inference of selected mutational alterations directly from routine histopathology slides. In particular, recent studies have shown that genetic changes in clinically relevant driver genes are reflected in the histological phenotype of solid tumors and can be inferred by analysing routine Haematoxylin and Eosin (H&E) stained tissue sections with Deep Learning. However, these studies mostly focused on selected individual genes in selected tumor types.

View Article and Find Full Text PDF

Background & Aims: Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene signatures are likely to be more sensitive to immunotherapy, however, the use of such signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence (AI) on whole-slide digital histological images, to develop models able to predict the activation of 6 immune gene signatures.

Methods: AI models were trained and validated in 2 different series of patients with HCC treated by surgical resection.

View Article and Find Full Text PDF

Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, even the simplest textbook models have been barely validated in real world-data of human patients. In this study, we fitted a range of differential equation models to tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors.

View Article and Find Full Text PDF

The spread of early-stage (T1 and T2) adenocarcinomas to locoregional lymph nodes is a key event in disease progression of colorectal cancer (CRC). The cellular mechanisms behind this event are not completely understood and existing predictive biomarkers are imperfect. Here, we used an end-to-end deep learning algorithm to identify risk factors for lymph node metastasis (LNM) status in digitized histopathology slides of the primary CRC and its surrounding tissue.

View Article and Find Full Text PDF

Deep learning is a powerful tool in computational pathology: it can be used for tumor detection and for predicting genetic alterations based on histopathology images alone. Conventionally, tumor detection and prediction of genetic alterations are two separate workflows. Newer methods have combined them, but require complex, manually engineered computational pipelines, restricting reproducibility and robustness.

View Article and Find Full Text PDF

Background: Fibroblast growth factor receptor (FGFR) inhibitor treatment has become the first clinically approved targeted therapy in bladder cancer. However, it requires previous molecular testing of each patient, which is costly and not ubiquitously available.

Objective: To determine whether an artificial intelligence system is able to predict mutations of the FGFR3 gene directly from routine histology slides of bladder cancer.

View Article and Find Full Text PDF

Therapy with immune checkpoint inhibitors (ICIs) can lead to durable tumor control in patients with various advanced stage malignancies. However, this is not the case for all patients, leading to an ongoing search for biomarkers predicting response and outcome to ICI. The B and T lymphocyte attenuator (BTLA) is an immune checkpoint expressed on immune cells that was shown to modulate therapeutic responses.

View Article and Find Full Text PDF