Publications by authors named "Narisorn Kitiyanant"

Fibroblast growth factor (FGF)-21 is a salient liver-derived endocrine regulator for metabolism of glucose and triglyceride as well as bone remodeling. Previously, certain peptides in the FGF family have been shown to modulate calcium absorption across the intestinal epithelia. Since FGF21 receptor, i.

View Article and Find Full Text PDF

Hemoglobin E (HbE), a common variant in Southeast Asian populations, results from a G to A substitution at codon 26 of the HBB gene, causing abnormal Hb and mild β-thalassemia-like symptoms. Here, we derived an induced pluripotent stem cell (iPSC) line, named MUi033-A, from a male homozygous for HbE. The iPSC line demonstrates a normal karyotype and embryonic stem cell-like properties including pluripotency gene expression, and tri-lineage differentiation potential.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent genetic diseases affecting the kidneys. A genetically specific mutation model is required to comprehend its pathophysiology and to develop a drug treatment. In this study, we successfully developed human induced pluripotent stem cells (hiPSCs) named MUi027-A from skin fibroblasts of a patient diagnosed with ADPKD and carrying the PKD1 frameshift mutation (c.

View Article and Find Full Text PDF

Advances in neuroscience have relied on the development of techniques that examine neuronal cell activities. One major challenge involves the limitations in labeling and controlling neuronal activities relating to the cell's activation state. In this study, the modified human codon-optimized channelrhodopsin-2 photoreceptor hChR2(C128S) was integrated into function with inducible gene expression methods and materials: the Tet system and the highly efficient minimum promoter of Arc/Arg3.

View Article and Find Full Text PDF

Background: Several pieces of evidence from in vitro studies showed that brain-derived neurotrophic factor (BDNF) promotes proliferation and differentiation of neural stem/progenitor cells (NSCs) into neurons. Moreover, the JAK2 pathway was proposed to be associated with mouse NSC proliferation. BDNF could activate the STAT-3 pathway and induce proliferation in mouse NSCs.

View Article and Find Full Text PDF

Aim: Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder primarily caused by mutations in COL1A1 or COL1A2, which encode type I collagen. These mutations affect the quantity and/or quality of collagen composition in bones, leading to bone fragility. Currently, there is still a lack of treatment that addresses disease-causing factors due to an insufficient understanding of the pathological mechanisms involved.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is one of the common genetic kidney disorders that are caused by mutations in PKD1 or PKD2 gene. In this report, the MUi026-A human induced pluripotent stem cell (hiPSC) line was established from the skin fibroblasts of a female ADPKD patient who had the PKD1 mutation with c.5878C > T.

View Article and Find Full Text PDF

The 13q deletion syndrome is a rare chromosomal disorder caused by loss of the long arm of chromosome 13, and usually entails developmental delay, intellectual disability, behavioral problems and distinctive facial features. In this study, we successfully generated a human iPSC line (MUi015-A) from skin fibroblasts of a patient who had large deletion of chromosome 13, del(13)(q14q22). The MUi015-A line exhibited embryonic stem cell characteristics with consistent pluripotency marker expression and the capability of differentiating into three germ layers.

View Article and Find Full Text PDF

Genetic engineering for neuronal cell activity labeling and neuronal cell activity modulation are invaluable for elucidating the underlying characteristics of the brain and neurons. In this study, ferritin fusion protein (FFP) was combined with Tet expression construct under a modified immediate-early gene (IEG) Arc/Arg3.1 promoter so-called SARE-ArcMin.

View Article and Find Full Text PDF

Transplantation with Wharton's jelly derived mesenchymal stem cells (WJ-MSCs) showed great benefits for restoring myocardial function. However, the outcome of WJ-MSCs transplantation was unsuccessful due to multiple factors including oxidative damage. The presence of oxidative stress due to myocardium injury influences fibrous tissue formation, which causes disability of cardiac muscle.

View Article and Find Full Text PDF

Mucopolysaccharidosis II (MPS II) is a lysosomal storage disorder (LSD), caused by iduronate 2-sulphatase (IDS) enzyme dysfunction. The neuropathology of the disease is not well understood, although the neural symptoms are currently incurable. MPS II-patient derived iPSC lines were established and differentiated to neuronal lineage.

View Article and Find Full Text PDF

Mutations in MYH9 gene is one of the major causes of inherited thrombocytopenia resulted from nonfunctional myosin-9 protein. We have generated a human induced pluripotent stem cell line MUi010-A from skin fibroblasts of a patient who had a point mutation c.2104C>T (p.

View Article and Find Full Text PDF

Melatonin, a highly lipophilic molecule secreted by the pineal gland in the brain, plays a role in various biological functions. Previous studies reported that melatonin exerts its effect on mesenchymal stem cell (MSC) survival and differentiation into osteogenic- and adipogenic-lineage. However, the effect of melatonin in neurogenic differentiation in amniotic fluid (AF)-MSCs remains to be explored, thus we investigated the potential role of melatonin on dopaminergic neuron differentiation in AF-MSCs.

View Article and Find Full Text PDF

To achieve in creating permanent shrimp cell lines, cellular arrest of primary cells in the culture is needed to be firstly solved. Considering the insertion of some markers affecting cellular proliferation into primary haemocytes in order to produce the black tiger shrimp cell line and the very low percent of transduced cells previously reported in penaeid shrimps, these paved us the way to set up suitable gene delivery protocols to increase percent of transduced cells in the shrimp as our primary aim. In this study, electroporation and lipofection were used to transfer construct plasmids (pLL3.

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4).

View Article and Find Full Text PDF

The MUi019-A human induced pluripotent stem cell line was generated from peripheral blood CD34+ hematopoietic progenitors of a healthy woman using a non-integrative reprogramming method. Episomal vectors carrying reprogramming factors OCT4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 and EBNA-1 were delivered using electroporation. The iPSC line can be used as a control in studying disease mechanisms.

View Article and Find Full Text PDF

Hemoglobin Constant Spring (HbCS, HBA2: c.427T>C) is a common nondeletional α-thalassemia resulting from a nucleotide substitution at the termination codon of the HBA2 gene. Homozygosity for HbCS is characterized with mild anemia, jaundice, and splenomegaly.

View Article and Find Full Text PDF

The thalassemias are a group of genetic disorders characterized by a deficiency in the synthesis of globin chains. In this study the MUi009-A human induced pluripotent stem cell line was successfully generated from peripheral blood CD34+ haematopoietic progenitors of a 32year old male who had coinherited a homozygous β°-thalassemia mutation at codon 41/42 (-TCTT) and a heterozygous α-thalassemia 4.2 deletion.

View Article and Find Full Text PDF

The therapeutic use of patient-specific induced pluripotent stem cells (iPSCs) is emerging as a potential treatment of β-thalassemia. Ideally, patient-specific iPSCs would be genetically corrected by various approaches to treat β-thalassemia including lentiviral gene transfer, lentivirus-delivered shRNA, and gene editing. These corrected iPSCs would be subsequently differentiated into hematopoietic stem cells and transplanted back into the same patient.

View Article and Find Full Text PDF

Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the gene coding the microtubule-associated protein tau (MAPT) can cause FTDP-17 but the underlying mechanisms of the disease are still unknown.

View Article and Find Full Text PDF

Frontotemporal dementia with parkinsonism linked to chromosome 17q21.2 (FTDP-17) is an autosomal-dominant neurodegenerative disorder. Mutations in the MAPT (microtubule-associated protein tau)-gene can cause FTDP-17, but the underlying pathomechanisms of the disease are still unknown.

View Article and Find Full Text PDF

Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) were generated from skin fibroblasts isolated from a 58-year old male with a L150P mutation in the presenilin 1 (PSEN-1) gene, which is responsible for the majority of familial cases of Alzheimer's disease (AD). The iPSCs were established by co-electroporation with episomal plasmids containing hOCT4, hSOX2, hL-MYC, hKLF4, hNANOG, hLIN28, and short hairpin RNA against TP53. The iPSCs contained the specific heterozygous mutation c.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) could induce chronic liver diseases and hepatocellular carcinoma in human. The use of primary human hepatocyte as a viral host is restrained with the scarcity of tissue supply. A culture model restricted to HCV genotype 2a (JFH-1) has been established using Huh7-derived hepatocyte.

View Article and Find Full Text PDF

Human iPSC line MU011.A-hiPS was generated from homozygous α-thalassemia (-(SEA)/-(SEA)) fetal skin fibroblasts using a non-integrative reprogramming method. Reprogramming factors OCT3/4, SOX2, KLF4, L-MYC, LIN28, and shRNA of TP53 contained in three episomal vectors were delivered using electroporation.

View Article and Find Full Text PDF