Publications by authors named "Nari J"

Mechanical dysfunction of patent foramen ovale (PFO) closure device is extremely rare. We present a 58-year-old male patient who had multiple episodes of ischemic strokes 3 years after PFO closure, which was related to PFO device mechanical dysfunction and thrombosis. He was successfully treated with surgical intervention.

View Article and Find Full Text PDF

Objective: To determine the accuracy of diagnosis of ophthalmic problems from health care practitioners such as optometrists, general practitioners, and emergency physicians in and around London, Ontario, Canada.

Design: Retrospective review of all referrals to the Ivey Eye Institute emergency eye clinic over a period of 6 months from January to July 2011.

Participants: During the study period, there were 1810 patient encounters, including 1134 new referrals.

View Article and Find Full Text PDF

The aim of this study was to design a convenient, specific, sensitive, and continuous lipase activity assay using natural long-chain triacylglycerols (TAGs). Oil was extracted from Parinari glaberrimum seed kernels and the purified TAGs were used as a substrate for detecting low levels of lipase activities. The purified TAGs are naturally fluorescent because more than half of the fatty acids from Parinari oil are known to contain 9,11,13, 15-octadecatetraenoic acid (parinaric acid) in its esterified form.

View Article and Find Full Text PDF

The fatty acid specificity of phospholipase D purified from germinating sunflower seeds was studied using mixed micelles with variable detergent/phospholipid ratios. The main advantage of this approach is that since the substrate is integrated in the detergent micelles, comparisons can be made between the kinetic constants of a wide range of phosphatidylcholine (PtdCho) compounds with various fatty acid contents. Phospholipase D is subject to interfacial activation as it is most active on water-insoluble substrates.

View Article and Find Full Text PDF

Fatty acyl-ester hydrolase was not detectable in dry sunflower seeds using various p-nitrophenyl-acyl-esters, 1,2-O-didodecyl-rac-glycero-3-glutaric acid-resorufin ester or emulsified sunflower oil as substrate. After inhibition of the seeds, acyl-ester hydrolase activity slowly developed in cotyledon extracts and was maximal after 5 days. No activity was directly measurable on oil bodies.

View Article and Find Full Text PDF

A phosphatase from soya-bean cell walls was purified to homogeneity and characterized. It consists of two identical 70-kDa subunits linked by one or several disulphide bridges and, to our knowledge, it does not seem to require metal ions to be fully active. At high substrate concentrations, the enzyme was most efficient at slightly alkaline pH levels, which is at variance with the acid requirements of phosphatases previously established in other plant cell walls; whereas at low substrate concentrations it was more active at acid pH levels.

View Article and Find Full Text PDF

The kinetic study of the de-esterification of natural pectin by soya bean or orange pectin methyl esterase shows that the rate of the reaction is highly controlled by the presence of polyamines. The reaction rate versus the polyamine concentration is a bell-shaped curve similar to that which is obtained when the concentration of salts is varied in the reaction mixture. However polyamines, in particular the largest ones, are more efficient than salts.

View Article and Find Full Text PDF

The hydrolysis of p-nitrophenyl acetate catalysed by pectin methylesterase is competitively inhibited by pectin and does not require metal ions to occur. The results suggest that the activastion by metal ions may be explained by assuming that they interact with the substrate rather than with the enzyme. With pectin used as substrate, metal ions are required in order to allow the hydrolysis to occur in the presence of pectin methylesterase.

View Article and Find Full Text PDF

The study of pectin methylesterase and wall-loosening enzyme activities in situ, as well as the estimation of the electrostatic potential of the cell wall, suggest a coherent picture of the role played by metal ions and pH in cell-wall extension. Cell-wall growth brings about a decrease of local proton concentration because the electrostatic potential difference (delta psi) of the wall decreases. This in turn activates pectin methylesterase, which restores the initial delta psi value.

View Article and Find Full Text PDF

The pectin methyl esterase from soybean cell walls has been isolated and purified to homogeneity. It is a protein with a relative molecular mass close to 33 000. The enzyme is maximally active at a pH close to 8 and its pH dependence may be explained by a classical Dixon model, where the two interconvertible enzyme ionization states coexist.

View Article and Find Full Text PDF

Soybean cell walls display a process of autolysis which results in the release of reducing sugars from the walls. Loosening and autolysis of cell wall are involved in the cell-wall growth process, for autolysis is maximum during both cell extension and cell-wall synthesis. Autolysis goes to completion within about 50 h and is an enzymatic process that results from the activity of cell wall exo- and endo-glycosyltransferases.

View Article and Find Full Text PDF

A new model which provides an explanation for pH-induced co-operativity of hysteretic enzymes is proposed. The essence of the model is that a region, or a domain, of the enzyme undergoes a spontaneous 'slow' conformational change which does not affect the geometry of the active site. The region which undergoes this spontaneous conformational transition bears an ionizable group.

View Article and Find Full Text PDF

A beta-glucosyltransferase, extracted and purified from the cell walls of isolated soybean cells, displays hysteretic behaviour. The enzyme is monomeric and has a negative co-operative between pH 5.5 and 7.

View Article and Find Full Text PDF

The flavoprotein NADP+ reductase from spinach chloroplasts may form a ternary complex with one molecule of NADP+ and one molecule of ferredoxin. Spectroscopic titration studies show that the NADP+ binding site and the ferredoxin binding site are totally independent, that is previous binding of ferredoxin does not modify binding of NADP+, and conversely. Since NADP+ reductase conditions the diaphorase reaction, that is an electron transfer between NADPH and various acceptors such as ferricyanide, the binding of ferrocyanide and its possible interaction with NADP+ and ferredoxin has been studied.

View Article and Find Full Text PDF