Publications by authors named "Narges Razavian"

Ensuring reliability of Large Language Models (LLMs) in clinical tasks is crucial. Our study assesses two state-of-the-art LLMs (ChatGPT and LlaMA-2) for extracting clinical information, focusing on cognitive tests like MMSE and CDR. Our data consisted of 135,307 clinical notes (Jan 12th, 2010 to May 24th, 2023) mentioning MMSE, CDR, or MoCA.

View Article and Find Full Text PDF

Early identification of Alzheimer's disease (AD) and AD-related dementias (ADRD) has high clinical significance, both because of the potential to slow decline through initiating FDA-approved therapies and managing modifiable risk factors, and to help persons living with dementia and their families to plan before cognitive loss makes doing so challenging. However, substantial racial and ethnic disparities in early diagnosis currently lead to additional inequities in care, urging accurate and inclusive risk assessment programs. In this study, we trained an artificial intelligence foundation model to represent the electronic health records (EHR) data with a vast cohort of 1.

View Article and Find Full Text PDF

Importance: Large language models (LLMs) are crucial for medical tasks. Ensuring their reliability is vital to avoid false results. Our study assesses two state-of-the-art LLMs (ChatGPT and LlaMA-2) for extracting clinical information, focusing on cognitive tests like MMSE and CDR.

View Article and Find Full Text PDF

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) and Lewy body disease (LBD) are the two most common neurodegenerative dementias and can occur in combination (AD+LBD). Due to overlapping biomarkers and symptoms, clinical differentiation of these subtypes could be difficult. However, it is unclear how the magnitude of diagnostic uncertainty varies across dementia spectra and demographic variables.

View Article and Find Full Text PDF

Early diagnosis of Alzheimer's disease plays a pivotal role in patient care and clinical trials. In this study, we have developed a new approach based on 3D deep convolutional neural networks to accurately differentiate mild Alzheimer's disease dementia from mild cognitive impairment and cognitively normal individuals using structural MRIs. For comparison, we have built a reference model based on the volumes and thickness of previously reported brain regions that are known to be implicated in disease progression.

View Article and Find Full Text PDF

Purpose: Increasingly complex MRI studies and variable series naming conventions reveal limitations of rule-based image routing, especially in health systems with multiple scanners and sites. Accurate methods to identify series based on image content would aid post-processing and PACS viewing. Recent deep/machine learning efforts classify 5-8 basic brain MR sequences.

View Article and Find Full Text PDF

Background: We previously developed and validated a predictive model to help clinicians identify hospitalized adults with coronavirus disease 2019 (COVID-19) who may be ready for discharge given their low risk of adverse events. Whether this algorithm can prompt more timely discharge for stable patients in practice is unknown.

Objectives: The aim of the study is to estimate the effect of displaying risk scores on length of stay (LOS).

View Article and Find Full Text PDF

Biopsies of inflammatory tissue contain a complex network of interacting cells, orchestrating the immune or autoimmune response. While standard histological examination can identify relationships, it is clear that a great amount of data on each slide is not quantitated or categorized in standard microscopic examinations. To deal with the huge amount of data present in biopsy tissue in an unbiased and comprehensive way, we have developed a deep learning algorithm to identify immune cells in biopsies of inflammatory lesions.

View Article and Find Full Text PDF

Image-based analysis as a method for mutation detection can be advantageous in settings when tumor tissue is limited or unavailable for direct testing. In this study, we utilize two distinct and complementary machine-learning methods of analyzing whole-slide images for predicting mutated BRAF. In the first method, whole-slide images of melanomas from 256 patients were used to train a deep convolutional neural network to develop a fully automated model that first selects for tumor-rich areas (area under the curve = 0.

View Article and Find Full Text PDF

The determination of endometrial carcinoma histological subtypes, molecular subtypes, and mutation status is critical for the diagnostic process, and directly affects patients' prognosis and treatment. Sequencing, albeit slower and more expensive, can provide additional information on molecular subtypes and mutations that can be used to better select treatments. Here, we implement a customized multi-resolution deep convolutional neural network, Panoptes, that predicts not only the histological subtypes but also the molecular subtypes and 18 common gene mutations based on digitized H&E-stained pathological images.

View Article and Find Full Text PDF

During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.

View Article and Find Full Text PDF

Importance: To date, the association of psychiatric diagnoses with mortality in patients infected with coronavirus disease 2019 (COVID-19) has not been evaluated.

Objective: To assess whether a diagnosis of a schizophrenia spectrum disorder, mood disorder, or anxiety disorder is associated with mortality in patients with COVID-19.

Design, Setting, And Participants: This retrospective cohort study assessed 7348 consecutive adult patients for 45 days following laboratory-confirmed COVID-19 between March 3 and May 31, 2020, in a large academic medical system in New York.

View Article and Find Full Text PDF

The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to develop and validate a parsimonious model to identify patients with favorable outcomes within 96 h of a prediction, based on real-time lab values, vital signs, and oxygen support variables.

View Article and Find Full Text PDF

During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3,661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.

View Article and Find Full Text PDF

Artificial intelligence (AI) has made stunning progress in the last decade, made possible largely due to the advances in training deep neural networks with large data sets. Many of these solutions, initially developed for natural images, speech, or text, are now becoming successful in medical imaging. In this article we briefly summarize in an accessible way the current state of the field of AI.

View Article and Find Full Text PDF

Background: Because of the strong link between childhood obesity and adulthood obesity comorbidities, and the difficulty in decreasing body mass index (BMI) later in life, effective strategies are needed to address this condition in early childhood. The ability to predict obesity before age five could be a useful tool, allowing prevention strategies to focus on high risk children. The few existing prediction models for obesity in childhood have primarily employed data from longitudinal cohort studies, relying on difficult to collect data that are not readily available to all practitioners.

View Article and Find Full Text PDF

Objective: Machine learning has recently gained considerable attention because of promising results for a wide range of radiology applications. Here we review recent work using machine learning in brain tumor imaging, specifically segmentation and MRI radiomics of gliomas.

Conclusion: We discuss available resources, state-of-the-art segmentation methods, and machine learning radiomics for glioma.

View Article and Find Full Text PDF

Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and subtype of lung tumors. Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung cancer, and their distinction requires visual inspection by an experienced pathologist. In this study, we trained a deep convolutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal lung tissue.

View Article and Find Full Text PDF

We present a new approach to population health, in which data-driven predictive models are learned for outcomes such as type 2 diabetes. Our approach enables risk assessment from readily available electronic claims data on large populations, without additional screening cost. Proposed model uncovers early and late-stage risk factors.

View Article and Find Full Text PDF

We introduce three algorithms for learning generative models of molecular structures from molecular dynamics simulations. The first algorithm learns a Bayesian-optimal undirected probabilistic model over user-specified covariates (e.g.

View Article and Find Full Text PDF