Publications by authors named "Narges Mortezaei"

Mitoribosomes are specialized protein synthesis machineries in mitochondria. However, how mRNA binds to its dedicated channel, and tRNA moves as the mitoribosomal subunit rotate with respect to each other is not understood. We report models of the translating fungal mitoribosome with mRNA, tRNA and nascent polypeptide, as well as an assembly intermediate.

View Article and Find Full Text PDF

Enterotoxigenic (ETEC) are common agents of diarrhea for travelers and a major cause of mortality in children in developing countries. To attach to intestinal cells ETEC express colonization factors, among them CFA/I, which are the most prevalent factors and are the archetypical representative of class 5 pili. The helical quaternary structure of CFA/I can be unwound under tensile force and it has been shown that this mechanical property helps bacteria to withstand shear forces from fluid motion.

View Article and Find Full Text PDF

Unlabelled: As adhesion fimbriae are a major virulence factor for many pathogenic Gram-negative bacteria, they are also potential targets for antibodies. Fimbriae are commonly required for initiating the colonization that leads to disease, and their success as adhesion organelles lies in their ability to both initiate and sustain bacterial attachment to epithelial cells. The ability of fimbriae to unwind and rewind their helical filaments presumably reduces their detachment from tissue surfaces with the shear forces that accompany significant fluid flow.

View Article and Find Full Text PDF

Preventive vaccines against enterotoxigenic Escherichia coli (ETEC) are being developed, many of which target common fimbrial colonization factors as the major constituent, based on empirical evidence that these function as protective antigens. Particularly, passive oral administration of ETEC anti-fimbrial antibodies prevent ETEC diarrhea. Little is, however, known regarding the specific mechanisms by which intestinal antibodies against ETEC fimbriae function to prevent disease.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in under-developed countries often leads to high mortality rates. Isolated ETEC expresses a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II, which are assembled via the alternate chaperone pathway (ACP), are among the most common. Fimbriae are filamentous structures whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical ability to unwind and rewind.

View Article and Find Full Text PDF

Pathogenic enterotoxigenic Escherichia coli (ETEC) are the major bacterial cause of diarrhea in young children in developing countries and in travelers, causing significant mortality in children. Adhesive fimbriae are a prime virulence factor for ETEC, initiating colonization of the small intestinal epithelium. Similar to other Gram-negative bacteria, ETEC express one or more diverse fimbriae, some assembled by the chaperone-usher pathway and others by the alternate chaperone pathway.

View Article and Find Full Text PDF

Uropathogenic strains of Escherichia coli establish urinary tract infections by attaching to host epithelial cells using adhesive organelles called fimbriae. Fimbriae are helix-like structures with a remarkable adaptability, offering safeguarding for bacteria exposed to changing fluid forces in the urinary tract. We challenged this property of P-fimbriae by cross-linking their subunits with shaft-specific antibodies and measuring the corresponding force response at a single organelle level.

View Article and Find Full Text PDF