Applying multifunctional nanocarriers, comprising specifically traceable and tumor targeting moieties, has significantly increased in cancer theranostics. Herein, a novel targeted, trackable, and pH-responsive drug delivery system was fabricated based on glucosamine (GlcN) conjugated graphene quantum dots (GQDs) loaded by hydrophobic anticancer agent, curcumin (Cur), to evaluate its targeting and cytotoxicity potential against breast cancer cells with overexpression of GlcN receptors. The biocompatible photoluminescent GQDs were synthesized from graphene oxide through the green and facile oxidizing method.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2017
Graphene quantum dots (GQDs) are new efficient nanomaterials used in therapeutic applications. In this study, blue fluorescent nitrogen-doped GQDs (N-GQDs) were synthesized by a hydrothermal method via pyrolisis of citric acid as the carbon source and urea as the nitrogen source. The existence of doped nitrogen in GQDs was confirmed by FTIR characterization.
View Article and Find Full Text PDF