RNA-sequencing (RNA-seq) is an essential technique for transcriptome studies, hundreds of analysis tools have been developed since it was debuted. Although recent efforts have attempted to assess the latest available tools, they have not evaluated the analysis workflows comprehensively to unleash the power within RNA-seq. Here we conduct an extensive study analysing a broad spectrum of RNA-seq workflows.
View Article and Find Full Text PDFUnlabelled: LongISLND is a software package designed to simulate sequencing data according to the characteristics of third generation, single-molecule sequencing technologies. The general software architecture is easily extendable, as demonstrated by the emulation of Pacific Biosciences (PacBio) multi-pass sequencing with P5 and P6 chemistries, producing data in FASTQ, H5, and the latest PacBio BAM format. We demonstrate its utility by downstream processing with consensus building and variant calling.
View Article and Find Full Text PDFA high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms.
View Article and Find Full Text PDFSomaticSeq is an accurate somatic mutation detection pipeline implementing a stochastic boosting algorithm to produce highly accurate somatic mutation calls for both single nucleotide variants and small insertions and deletions. The workflow currently incorporates five state-of-the-art somatic mutation callers, and extracts over 70 individual genomic and sequencing features for each candidate site. A training set is provided to an adaptively boosted decision tree learner to create a classifier for predicting mutation statuses.
View Article and Find Full Text PDFUnlabelled: Structural variations (SVs) are large genomic rearrangements that vary significantly in size, making them challenging to detect with the relatively short reads from next-generation sequencing (NGS). Different SV detection methods have been developed; however, each is limited to specific kinds of SVs with varying accuracy and resolution. Previous works have attempted to combine different methods, but they still suffer from poor accuracy particularly for insertions.
View Article and Find Full Text PDFSummary: VarSim is a framework for assessing alignment and variant calling accuracy in high-throughput genome sequencing through simulation or real data. In contrast to simulating a random mutation spectrum, it synthesizes diploid genomes with germline and somatic mutations based on a realistic model. This model leverages information such as previously reported mutations to make the synthetic genomes biologically relevant.
View Article and Find Full Text PDFMotivation: Next-generation sequence analysis has become an important task both in laboratory and clinical settings. A key stage in the majority sequence analysis workflows, such as resequencing, is the alignment of genomic reads to a reference genome. The accurate alignment of reads with large indels is a computationally challenging task for researchers.
View Article and Find Full Text PDFAberrant intracellular signaling plays an important role in many diseases. The causal structure of signal transduction networks can be modeled as Bayesian Networks (BNs), and computationally learned from experimental data. However, learning the structure of Bayesian Networks (BNs) is an NP-hard problem that, even with fast heuristics, is too time consuming for large, clinically important networks (20-50 nodes).
View Article and Find Full Text PDFHuman embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5-6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression.
View Article and Find Full Text PDF