Publications by authors named "Nargeot J"

L-type voltage-gated calcium channels are involved in multiple physiological functions. Currently available antagonists do not discriminate between L-type channel isoforms. Importantly, no selective blocker is available to dissect the role of L-type isoforms Ca1.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI) is the major cause of cardiovascular mortality worldwide. Most ischemic episodes are triggered by an increase in heart rate, which induces an imbalance between myocardial oxygen delivery and consumption. Developing drugs that selectively reduce heart rate by inhibiting ion channels involved in heart rate control could provide more clinical benefits.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e.

View Article and Find Full Text PDF

Background: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARβ/δ (Peroxisome proliferator-activated receptors β/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARβ/δ-dependent but not related to the anti-inflammatory effect of MSC.

View Article and Find Full Text PDF

Cardiovascular diseases (CVD) including acute myocardial infarction (AMI) rank first in worldwide mortality and according to the World Health Organization (WHO), they will stay at this rank until 2030. Prompt revascularization of the occluded artery to reperfuse the myocardium is the only recommended treatment (by angioplasty or thrombolysis) to decrease infarct size (IS). However, despite beneficial effects on ischemic lesions, reperfusion leads to ischemia-reperfusion (IR) injury related mainly to apoptosis.

View Article and Find Full Text PDF

Myocardial infarction ranks first for the mortality worldwide. Because the adult heart is unable to regenerate, fibrosis develops to compensate for the loss of contractile tissue after infarction, leading to cardiac remodeling and heart failure. Adult mesenchymal stem cells (MSC) regenerative properties, as well as their safety and efficacy, have been demonstrated in preclinical models.

View Article and Find Full Text PDF

Cardiac automaticity is set by pacemaker activity of the sinus node (SAN). In addition to the ubiquitously expressed cardiac voltage-gated L-type Ca1.2 Ca channel isoform, pacemaker cells within the SAN and the atrioventricular node co-express voltage-gated L-type Ca1.

View Article and Find Full Text PDF

Reperfusion therapy during myocardial infarction (MI) leads to side effects called ischemia-reperfusion (IR) injury for which no treatment exists. While most studies have targeted the intrinsic apoptotic pathway to prevent IR injury with no successful clinical translation, we evidenced recently the potent cardioprotective effect of the anti-apoptotic Tat-DAXXp (TD) peptide targeting the FAS-dependent extrinsic pathway. The aim of the present study was to evaluate TD long term cardioprotective effects against IR injury in a MI mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied a way to help protect the heart during a serious problem called myocardial ischaemia-reperfusion (IR) injury, which happens during a heart attack.
  • They created a special peptide (Tat-DAXXp) that can block a harmful signal in heart cells to reduce cell death.
  • When tested in mice, this peptide significantly decreased heart damage and improved survival after a heart attack, making it a promising option for treatment.
View Article and Find Full Text PDF

Protease enzymes generated from injured cells and leukocytes are the primary cause of myocardial cell damage following ischemia/reperfusion (I/R). The inhibition of protease enzyme activity via the administration of particular drugs may reduce injury and potentially save patients' lives. The aim of the current study was to investigate the cardioprotective effects of treatment with recombinant human secretory leukocyte protease inhibitor (rhSLPI) on and models of myocardial I/R injury.

View Article and Find Full Text PDF

MLC901, a traditional Chinese medicine containing a cocktail of active molecules, both reduces cerebral infarction and improves recovery in patients with ischemic stroke. The aim of this study was to evaluate the acute and long-term benefits of MLC901 in ischemic and reperfused mouse hearts. Ex vivo, under physiological conditions, MLC901 did not show any modification in heart rate and contraction amplitude.

View Article and Find Full Text PDF

Aims: In a previous study using a genome-wide microarray strategy, we identified metabotropic glutamate receptor 1 (mGluR1) as a putative cardioprotective candidate in ischaemic postconditioning (PostC). In the present study, we investigated the role of cardiac mGluR1 receptors during cardioprotection against myocardial ischaemia-reperfusion injury in the mouse myocardium.

Methods And Results: mGluR1 activation by glutamate administered 5 min before reperfusion in C57Bl/6 mice subjected to a myocardial ischaemia protocol strongly decreased both infarct size and DNA fragmentation measured at 24 h reperfusion.

View Article and Find Full Text PDF

Dysfunction of pacemaker activity in the sinoatrial node (SAN) underlies "sick sinus" syndrome (SSS), a common clinical condition characterized by abnormally low heart rate (bradycardia). If untreated, SSS carries potentially life-threatening symptoms, such as syncope and end-stage organ hypoperfusion. The only currently available therapy for SSS consists of electronic pacemaker implantation.

View Article and Find Full Text PDF

Aims: Sino-atrial node (SAN) automaticity is an essential mechanism of heart rate generation that is still not completely understood. Recent studies highlighted the importance of intracellular Ca(2+) ([Ca(2+)]i) dynamics during SAN pacemaker activity. Nevertheless, the functional role of voltage-dependent L-type Ca(2+) channels in controlling SAN [Ca(2+)]i release is largely unexplored.

View Article and Find Full Text PDF

The T-type calcium channel Cav3.2 emerges as a key regulator of sensory functions, but its expression pattern within primary afferent neurons and its contribution to modality-specific signaling remain obscure. Here, we elucidate this issue using a unique knockin/flox mouse strain wherein Cav3.

View Article and Find Full Text PDF

The mechanisms underlying cardiac automaticity are still incompletely understood and controversial. Here we report the complete conditional and time-controlled silencing of the 'funny' current (If) by expression of a dominant-negative, non-conductive HCN4-channel subunit (hHCN4-AYA). Heart-specific If silencing caused altered [Ca(2+)]i release and Ca(2+) handling in the sinoatrial node, impaired pacemaker activity and symptoms reminiscent of severe human disease of pacemaking.

View Article and Find Full Text PDF

The acute necrotizing enterocolitis (ANE) is a partial or total necrosis of the small and large intestine. This is a case report of an antipsychotic induced ANE.

View Article and Find Full Text PDF

In 1938, the French government decided to enact a first legislation to enforce admission of the mentally ill to hospitals. Later in 1990, the law took into consideration the evolution of practices with an increase of free admissions and the right to maintain the mentally ill in cities. Three types of psychiatric hospitalization were defined: free, on third party request and for involuntary confinement.

View Article and Find Full Text PDF

The sense of touch allows an organism to detect and respond to physical environmental stimuli. Mechanosensitive proteins play a crucial role in this process by converting the mechanical cue into a biological response. Recently, the Piezo family of stretch-activated ion channels has been identified as genuine mechanosensitive proteins.

View Article and Find Full Text PDF

Mechanosensitivity is an inherent property of virtually all cell types, allowing them to sense and respond to physical environmental stimuli. Stretch-activated ion channels represent a class of mechanosensitive proteins which allow cells to respond rapidly to changes in membrane tension; however their identity has remained elusive. The piezo genes have recently been identified as a family of stretch-activated mechanosensitive ion channels.

View Article and Find Full Text PDF

Parasympathetic regulation of sinoatrial node (SAN) pacemaker activity modulates multiple ion channels to temper heart rate. The functional role of the G-protein-activated K(+) current (IKACh) in the control of SAN pacemaking and heart rate is not completely understood. We have investigated the functional consequences of loss of IKACh in cholinergic regulation of pacemaker activity of SAN cells and in heart rate control under physiological situations mimicking the fight or flight response.

View Article and Find Full Text PDF

Ischemic postconditioning applied at the onset of reperfusion reduces myocardial infarction in both animals and humans. Our recent study on the mouse myocardium showed for the first time that delayed postconditioning (applied up to 30 min after the onset of reperfusion) can decrease infarct size. The existence of a longer cardioprotection window is conceptually relevant for clinical application and also in the case of a pharmacological strategy.

View Article and Find Full Text PDF