Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability.
View Article and Find Full Text PDFLignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues.
View Article and Find Full Text PDFAnaerobic digestion (AD) is a biochemical process that converts waste organic matter into energy-rich biogas with methane as the main component. Addition of electric electro-conductive, such as that nanoparticles (NP), has been shown to improve biogas generation. Interspecies electron transfer and direct interspecies electron transfer (DIET) using conductive materials is one of the mechanisms responsible for observed increases in CH.
View Article and Find Full Text PDFThe present study aimed to investigate the biopolymer production using VFA's as carbon source through feast and famine strategy in a sequencing batch reactor. Famine condition with nutrients and oxygen limitation resulted in high polyhydroxybutyrate yield (PHB: 2.65 ± 0.
View Article and Find Full Text PDFElectro-fermentation is an emerging bioporcess that could regulate the metabolism of electrochemically active microorganisms. The provision of electrodes for the fermentation process that functions as an electron acceptor and supports the formation and transportation of electrons and protons, consequently producing bioelectricity and value-added chemicals. The traditional method of fermentation has several limitations in usability and economic feasibility.
View Article and Find Full Text PDFMicroalgal biomass sequestrates CO and is regarded as a promising renewable feedstock for anaerobic digestion because of its adequate carbohydrate content and lignin-free structure. This study optimizes the dilute-acid pretreatment of Chlorella sp. and subsequent biomethane production using response surface methodology and central composite design with temperature, pretreatment time and solid-to-liquid ratio as variables.
View Article and Find Full Text PDFThe present study is designed to evaluate the potential of deoiled algal biomass (DAB) residue as an alternative resource for the production of bioethanol and biopolymers in a biorefinery approach. Hybrid pretreatment method resulted in higher sugar solubilization (0.590 g/g DAB) than the corresponding individual physicochemical (0.
View Article and Find Full Text PDFThe study aimed to evaluate biopolymer production using two bacterial strains, Acinetobacter junii BP25 and Aeromonas hydrophila ATCC 7966, and their co-culture. Batch experiments were evaluated using acetate and butyrate as carbon sources in feast and famine strategy. Feast phase was studied using carbon, nitrates and phosphate in the ratio of 100:8:1 and famine phase was limited with the phosphate and nitrates.
View Article and Find Full Text PDFThe objective of the study was to evaluate the potential application of defatted algal biomass (DAB) residue as a resource for biobased product synthesis in the biorefinery framework. Acid-catalyzed pretreatment of DAB residue resulted in higher reducing sugars (RS) solubilization (0.26 g RS/g DAB) than corresponding base method (0.
View Article and Find Full Text PDFEnvironmental and climatic change issues, population explosion, rapid urbanisation, depletion of fossil reserves, need for energy security, huge waste generation, etc. are some of the inherent issues associated with the fossil based linear economy which need greater attention. In this context, the world is gradually transforming from fossil-based economy to a sustainable circular bio-economy.
View Article and Find Full Text PDFTreatment of dye bearing wastewater through biological machinery is particularly challenging due to its recalcitrant and inhibitory nature. In this study, functional behavior and treatment efficiency of bio-electrochemical treatment (BET) system was evaluated with increasing azo dye concentrations (100, 200, 300 and 500mg dye/l). Maximum dye removal was observed at 300mg dye/l (75%) followed by 200mg dye/l (65%), 100mg dye/l (62%) and 500mg dye/l (58%).
View Article and Find Full Text PDFTreatment of crystalline cellulose based wastewater was carried out in periodic discontinuous batch reactor (PDBR). Specific influence of dissolved oxygen on treatment of crystalline cellulosic (CC) wastewater was evaluated in three different microenvironments such as aerobic, anoxic and anaerobic. PDBR-aerobic biosystem documented relatively higher substrate degradation [2.
View Article and Find Full Text PDFThe present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.
View Article and Find Full Text PDFThe present study illustrates the influence of microaerophilic condition on periodic discontinuous batch reactor (PDBR) operation in treating azo dye containing wastewater. The process performance was evaluated with the function of various dye load operations (50-750 mg/l) by keeping the organic load (1.6 kg COD/m(3)-day) constant.
View Article and Find Full Text PDFAlgal biomass grown hetrotrophically in domestic wastewater was evaluated as pyrolytic feedstock for harnessing biogas, bio-oil and bio-char. Freshly harvested microalgae (MA) and lipid extracted microalgae (LEMA) were pyrolysed in packed bed reactor in the presence and absence of sand as additive. MA (without sand additive) depicted higher biogas (420 ml/g; 800 °C; 3 h) and bio-oil (0.
View Article and Find Full Text PDFEffect of dye (C.I.Acid Black 10B) load-shock was comparatively evaluated in biofilm (self-immobilized) and suspended growth systems operated in periodic discontinuous batch mode (PDBR, anoxic-aerobic-anoxic) was investigated.
View Article and Find Full Text PDFVariation in anoxic microenvironment (multi-phase (MP) metabolic shift strategy) during cycle operation of periodic discontinuous batch/sequencing batch (PDBR/SBR) mode operation showed enhanced degradation of recalcitrant azo dye (C.I. Acid Black 10B) at higher dye load (1250mg/l).
View Article and Find Full Text PDFInsect pests inflict damage to humans, farm animals, and crops. Human and animal pests put more than 100 million people and 80 million cattle at risk worldwide. Plant pests are the main reason for destroying one fifth of the world's total crop production annually.
View Article and Find Full Text PDFThe present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C.
View Article and Find Full Text PDFJ Insect Physiol
September 2010
We studied the feeding, growth and reproductive behaviour of Papilio polytes (common mormon butterfly) on five different host plants, Murraya koenigii, Toddalia asiatica, Glycosmis pentaphylla, Aegle marmelos and Citrus medica. The growth rate of P. polytes was fastest on M.
View Article and Find Full Text PDF