Publications by authors named "Naresh K Rajendran"

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT.

View Article and Find Full Text PDF

Epithelial to mesenchymal transition (EMT) is a cellular process that converts epithelial cells to mesenchymal cells with migratory potential in both developmental and pathological processes. Although originally considered a binary event, EMT in cancer progression involves intermediate states between a fully epithelial and a fully mesenchymal phenotype, which are characterized by distinct combinations of epithelial and mesenchymal markers. This phenomenon has been termed epithelial to mesenchymal plasticity (EMP), however, the intermediate states remain poorly described and it's unclear whether they exist during developmental EMT.

View Article and Find Full Text PDF

Background: Alcohol (ethanol) consumption has different influences on arterial disease, being protective or harmful depending on the amount and pattern of consumption. The mechanisms mediating these biphasic effects are unknown. Whereas endothelial cells play a critical role in maintaining arterial health, this study compared the effects of moderate and high alcohol concentrations on endothelial cell function.

View Article and Find Full Text PDF

Notch is important to vessel homeostasis. We investigated the mechanistic role of caveolin-1 (Cav-1) in mediating the effects of alcohol (Ethanol/EtOH) on the γ-secretase proteolytic activity necessary for Notch signaling in vascular cells. Human coronary artery endothelial cells (HCAEC) were treated with EtOH (0-50 mM), Notch ligand delta-like ligand 4 (Dll4), and the γ-secretase inhibitor DAPT.

View Article and Find Full Text PDF

(RF) has widely been used to treat various ailments, including pain, diabetes, and cancer. Zinc oxide nanoparticles (ZnO NPs) have drawn attention in modern healthcare applications. Hence, we designed this study to synthesize zinc oxide (ZnO) nanoparticles using root extract to investigate its synergistic cytotoxic effect on MCF-7 cells and explore the possible cell death mechanism.

View Article and Find Full Text PDF

Background: Arterial endothelium plays a critical role in maintaining vessel homeostasis and preventing atherosclerotic cardiovascular disease (CVD). Low-to-moderate alcohol (EtOH) consumption is associated with reduced atherosclerosis and stimulates Notch signaling in endothelial cells. The aim of this study was to determine whether EtOH protects the endothelium against serum amyloid A1 (SAA1)-induced activation/injury, and to determine whether this protection is exclusively Notch-dependent.

View Article and Find Full Text PDF

Recently, the biosynthesis of zinc oxide nanoparticles (ZnO NPs) from crude extracts and phytochemicals has attracted much attention. Green synthesis of NPs is cost-effective, eco-friendly, and is a promising alternative for chemical synthesis. This study involves ZnO NPs synthesis using root extract (RE) as an efficient reducing agent.

View Article and Find Full Text PDF

Chemicals and signaling molecules released by injured cells at the beginning of wound healing prompt inflammation. In diabetes, prolonged inflammation is one of the probable causes for delayed wound healing. Increased levels of cyclooxygenase-2 (cox-2), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-) are associated with the inflammatory response and in diabetes, and increased levels of these contribute to chronic wounds that do not heal.

View Article and Find Full Text PDF

Increasing evidence suggests that adipose-derived stem cells (ADSCs) serve as a therapeutic approach for wound healing. The aim of this study was to determine the effect of photobiomodulation (PBM) on antioxidant enzymes in ADSCs. Four ADSC cell models, namely, normal, wounded, diabetic, and diabetic wounded, were irradiated with 660 nm (fluence of 5 J/cm and power density of 11.

View Article and Find Full Text PDF

This study aimed to elucidate the underlying molecular mechanism of photobiomodulation (PBM) in attenuating oxidative stress in diabetic wounded fibroblast cells. Cell models were exposed to PBM at a wavelength of 660 nm (fluence of 5 J/cm, and power density of 11.2 mW/cm) or 830 nm (fluence of 5 J/cm, and power density of 10.

View Article and Find Full Text PDF

Solid-liquid nanocarriers (SLNs) are at the front of the rapidly emerging field of medicinal applications with a potential role in the delivery of bioactive agents. Here, we report a new SLN of natural deep eutectic solvent (NADES) and biotin-conjugated lysine-polyethylene glycol copolymer. The SLN system was analyzed for its functional groups, thermal stability, crystalline nature, particle size, and surface morphology through the instrumental analysis of FT-IR, TGA, XRD, DLS, SEM, and TEM.

View Article and Find Full Text PDF

Here, the retinal targeting SA-g-AA coated multilamellar liposomes carrier synthesized to deliver the bioactive agents into the retinal region of the eye. The multilayered targeting macromolecules of liposomes prepared using a layer-by-layer assembly. The curcumin (CUR) and Rhodamine B (RhB) dyes loaded in a multilamellar vesicle (MLV) were synthesised by the lipid film hydration method.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) are naturally occurring molecules that start to accumulate from embryonic developmental stages and form as part of normal ageing. When reducing sugars interact with and modify proteins or lipids, AGE production occurs. AGE formation accelerates in chronic hyperglycemic conditions, and high AGE levels have been associated with the pathogenesis of various diseases.

View Article and Find Full Text PDF

Cervical cancer is one of the most occurring cancers and the fourth leading occurrence of cancer in women, worldwide. In this study, we planned to synthesis κ-Carrageenan grafted graphene oxide nanocarrier conjugated with biotin (GO-κ-Car-biotin) for targeted cervical cancer. Doxorubicin (DOX) is a well-known anticancer drug for any type of cancer and it is used to entrap over on the graphene oxide surface via π-π stacking interaction.

View Article and Find Full Text PDF

The adaptability, joint with a large surface area, electronic flexibility, high intrinsic mobility, high mechanical strength and supreme thermal conductivity have condensed graphene family materials attractive as technological tools of the drug delivery system. In this present study, investigate a modified graphene oxide-methyl acrylate (GO-g-MA) nanocarrier for targeted anti-cancer drug delivery in breast cancer cells and the GO-g-MA fascinated with folic acidas a targeting ligand to target the cancer cells. Paclitaxel (PTX) was assembled through π-π stacking, hydrophophic interaction on the surface of the GO-g-MA/FA carrier.

View Article and Find Full Text PDF

An amphiphilic polymer that consisted of a deep eutectic solvent (DES)-mediated drug carrier was designed, where the DES influenced the formation of folic acid (FA)-tagged -β-alanine--PCL polymer (DES@FA--β-alanine--PCL); the nature of the carrier was investigated through emission analysis and pyrene used as a model probe (CMC = 0.4 mg/mL). The amphiphilic polymer was self-assembled into a sphere (≈204 nm diameter) with a surface charge of -3 ± 0.

View Article and Find Full Text PDF

Wound healing is a complex overlapping biological process that involves a sequence of events coordinated by various cells, proteins, growth factors, cytokines and signaling molecules. Recent evidence indicates that forkhead box O1 (FOXO1) transcription factors play an important role in organizing these events to stimulate wound healing. The ubiquitously expressed forkhead box, class O (FOXO) transcription factors act as cell signaling molecules in various transcriptional processes that are involved in diverse cellular activities, including cell death, cell differentiation, DNA repair, apoptosis, and oxidative stress in response to stimuli, and interact with numerous proteins.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are classified as metal-based nanoparticles and have gained considerable attention amongst researchers in wound healing applications, owing to their physicochemical and biological properties. Biopolymers are abundantly available from natural sources and are used in numerous applications in pharmaceutical sciences and medicine. Silver nanoparticles and biopolymer-based biomaterials (AgNP-BMs) are non-cytotoxic and safe for patients in wound care management.

View Article and Find Full Text PDF