Background: Users of continuous glucose monitoring (CGM) systems are concerned with the frequency of inserting and calibrating new sensors, with sensor accuracy and reliability throughout the sensor's functional life, and with the risks associated with inaccurate sensor readings.
Methods: A sensor for our next-generation CGM system was tested for accuracy by comparison with self-monitored blood glucose (SMBG) values throughout 10 days of wear. Fifty subjects (49 with type 1 diabetes, 1 with type 2 diabetes, 20 male, mean ± standard deviation [SD] age 32.
Input from continuous glucose monitors (CGMs) is a critical component of artificial pancreas (AP) systems, but CGM performance issues continue to limit progress in AP research. While G4 PLATINUM has been integrated into AP systems around the world and used in many successful AP controller feasibility studies, this system was designed to address the needs of ambulatory CGM users as an adjunctive use system. Dexcom and the University of Padova have developed an advanced CGM, called G4AP, to specifically address the heightened performance requirements for future AP studies.
View Article and Find Full Text PDFObjectives: The goal of the present study was to develop a chemical seizure model using the convulsant, 3-mercaptopropionic acid (3-MPA). A pharmacodynamics approach was taken, combining in vivo microdialysis sampling with electrophysiological methods to simultaneously monitor, in real-time, the 3-MPA concentration in the brain and the corresponding electrocorticographic (ECoG) activity.
Methods: The 3-MPA was administered in two doses (50 and 100 mg/kg) in order to study its pharmacokinetics.
Epilepsy is the most prevalent neurological disorder affecting both adults and children. Over two-and-one-half million individuals in the United States have epilepsy and 25% of them do not respond to drugs. A significant focus of current research efforts is the development of a fully implantable device for real-time seizure detection and automated warning and blockage of seizures.
View Article and Find Full Text PDFThe need for novel, efficacious, antiseizure therapies is widely acknowledged. This study investigates in humans the feasibility, safety, and efficacy of high-frequency electrical stimulation (HFES; 100-500 Hz) triggered by automated seizure detections. Eight patients were enrolled in this study, which consisted of a control and an experimental phase.
View Article and Find Full Text PDF