Publications by authors named "Narendra Y Kadoo"

Cochliobolus sativus (anamorph: Bipolaris sorokiniana) is a filamentous fungus from the class Dothideomycetes. It is a pathogen of cereals including wheat and barley, and causes foliar spot blotch, root rot, black point on grains, head blight, leaf blight, and seedling blight diseases. Annual yields of these economically important cereals are severely reduced due to this pathogen attack.

View Article and Find Full Text PDF

Pandanus odorifer (Forssk) Kuntze grows naturally along the coastal regions and withstands salt-sprays as well as strong winds. A combination of omics approaches and enzyme activity studies was employed to comprehend the mechanistic basis of high salinity tolerance in P. odorifer.

View Article and Find Full Text PDF

Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless.

View Article and Find Full Text PDF

In grapes (Vitis vinifera L.), exogenous gibberellic acid (GA) is applied at different stages of bunch development to achieve desirable bunch shape and berry size in seedless grapes used for table purpose. RNA sequence-based transcriptome analysis was used to understand the mechanism of GA action at cluster emergence, full bloom, and berry stage in table grape variety Thompson Seedless.

View Article and Find Full Text PDF

Alphonso is known as the "King of mangos" due to its unique flavor, attractive color, low fiber pulp and long shelf life. We analyzed the transcriptome of Alphonso mango through Illumina sequencing from seven stages of fruit development and ripening as well as flower. Total transcriptome data from these stages ranged between 65 and 143 Mb.

View Article and Find Full Text PDF

Fusarium wilt is one of the major biotic stresses reducing chickpea productivity. The use of wilt-resistant cultivars is the most appropriate means to combat the disease and secure productivity. As a step towards understanding the molecular basis of wilt resistance in chickpea, we investigated the transcriptomes of wilt-susceptible and wilt-resistant cultivars under both Fusarium oxysporum f.

View Article and Find Full Text PDF

Background: Linseed is the richest agricultural source of α-linolenic acid (ALA), an ω-3 fatty acid (FA) that offers several nutritional benefits. In the present study, sequence characterization of six desaturase genes (SAD1, SAD2, FAD2, FAD2-2, FAD3A and FAD3B) and 3D structure prediction of their proteins from ten Indian linseed varieties differing in ALA content were performed to determine whether the nucleotide and amino acid (AA) sequence variants have any functional implications in differential accumulation of ALA or other FAs in linseed.

Results: The SAD and FAD2 genes exhibited few sequence variations among the ten varieties, forming only one or two protein isoforms.

View Article and Find Full Text PDF

Molecular changes elicited by plants in response to fungal attack and how this affects plant-pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp.

View Article and Find Full Text PDF

DNA barcoding enables precise identification of species from analysis of unique DNA sequence of a target gene. The present study was undertaken to develop barcodes for different species of the genus Dalbergia, an economically important timber plant and is widely distributed in the tropics. Ten Dalbergia species selected from the Western Ghats of India were evaluated using three regions in the plastid genome (matK, rbcL, trnH-psbA), a nuclear transcribed spacer (nrITS) and their combinations, in order to discriminate them at species level.

View Article and Find Full Text PDF

Chickpea is the third most widely grown legume in the world and mainly used as a vegetarian source of human dietary protein. Fusarium wilt, caused by Fusarium oxysporum f. sp.

View Article and Find Full Text PDF

Linseed or flax (Linum usitatissimum L.) varieties differ markedly in their seed α-linolenic acid (ALA) levels. Fatty acid desaturases play a key role in accumulating ALA in seed.

View Article and Find Full Text PDF

Plants employ different disease-resistance genes to detect pathogens and to induce defense responses. The largest class of these genes encodes proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains. To identify the putative NBS-LRR encoding genes from linseed, we analyzed the recently published linseed genome sequence and identified 147 NBS-LRR genes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.

View Article and Find Full Text PDF

Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds.

View Article and Find Full Text PDF

Background: The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans.

View Article and Find Full Text PDF

Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including the model plant Arabidopsis thaliana. Currently, very little is known about the molecular or physiological processes that are activated in the host during infection and the roles these processes play in resistance and susceptibility to F. oxysporum.

View Article and Find Full Text PDF

The objective of this study was to analyze the genetic relationships, using PCR-based ISSR markers, among 70 Indian flax (Linum usitatissimum L.) genotypes actively utilized in flax breeding programs. Twelve ISSR primers were used for the analysis yielding 136 loci, of which 87 were polymorphic.

View Article and Find Full Text PDF