The purpose of the present study was to investigate the tumor targeting potential of surface tailored solid lipid nanoparticles (SLNs) loaded with an anti-cancer drug doxorubicin HCl (DOX). DOX encapsulating SLNs were prepared, characterized and further mannosylated. The developed formulations were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), particle size/polydispersity index and zeta-potential analysis.
View Article and Find Full Text PDFThe aim of the present investigation was to evaluate the prospective of surface-engineered vesicular carriers for mucosal immunization via the nasal route. IgG antibody was immobilized on the surface of hepatitis B surface antigen (HBsAg) antigen-loaded liposomes. The developed formulations were characterized on the basis of physicochemical parameters, such as morphology, particle size, polydispersity index, entrapment efficiency, and zeta potential.
View Article and Find Full Text PDFThe objective of the present study was to evaluate the prospective of engineered nanoparticles for selective delivery of an antituberculosis drug, rifabutin, to alveolar tissues. Drug-loaded solid lipid nanoparticles (SLNs) were synthesized and efficiently mannosylated. The formation of uncoated and coated SLNs was characterized by FTIR spectroscopy and SEM studies.
View Article and Find Full Text PDFBlood Brain Barrier (BBB) represents a major hurdle for the delivery of bioactives in the brain. It serves as a major constraint for the entry of hydrophilic drugs and the efflux pumps present on its surface restrain the intracellular accumulation of pharmacological moieties in the brain. Nanoparticles (NPs) in this regard can serve as a potential module for ferrying large doses of drugs across the BBB.
View Article and Find Full Text PDF