Publications by authors named "Naren Vyavahare"

Article Synopsis
  • Medial arterial calcification (MAC) is common in older adults and those with metabolic disorders, leading researchers to explore nanoparticle therapy to reverse this condition.
  • In the study, rats were induced with kidney failure and severe calcification using an adenine diet and vitamin D3 injections, followed by treatment with targeted nanoparticles containing EDTA.
  • Results were assessed using advanced imaging and molecular techniques to measure calcification reduction and the effect on bone-related markers, comparing treated rats to sham controls.
View Article and Find Full Text PDF

Pentagalloyl glucose (PGG) is a polyphenol with vasoprotective properties. Targeted delivery of PGG reversed aortic aneurysm growth in several rodent models associated with decreased number of macrophages and transforming growth factor-β (TGF-β) expression. Thus, we sought to determine cellular mechanisms by which PGG reduces macrophage-induced aortic pathogenicity and its relationship to TGF-β.

View Article and Find Full Text PDF

Congenital heart diseases (CHD) are one of the most frequently diagnosed congenital disorders, affecting approximately 40,000 live births annually in the United States. Out of the new patients diagnosed with CHD yearly, an estimated 2,500 patients require a substitute, non-native conduit artery to replace structures congenitally absent or hypoplastic. Devices used for conduit replacement encounter limitations exhibiting varying degrees of stiffness, calcification, susceptibility to infection, thrombosis, and a lack of implant growth capacity.

View Article and Find Full Text PDF

Atherosclerosis is driven by intimal arterial macrophages accumulating cholesterol. Atherosclerosis also predominantly occurs in areas consisting of proinflammatory arterial endothelial cells. At time of writing, there are no available clinical treatments that precisely remove excess cholesterol from lipid-laden intimal arterial macrophages.

View Article and Find Full Text PDF

Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. Here we show increased stiffness of pulmonary arteries from patients with left heart disease that correlates with impaired pulmonary hemodynamics.

View Article and Find Full Text PDF

Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated.

View Article and Find Full Text PDF

Thoracic aortic aneurysm (TAA) is characterized by dilation of the aorta that can lead to dissection or rupture. Degradation of elastic fibers is a consistent histopathological feature of TAA that likely contributes to disease progression. Pentagalloyl glucose (PGG) shows promise for stabilizing elastic fibers in abdominal aortic aneurysms, but its efficacy and mechanical effects in the thoracic aorta are unknown.

View Article and Find Full Text PDF

Objective: An Abdominal aortic aneurysm (AAA), a deadly disease in elderly population, is featured by expansion of aortic diameter, degradation and weakening of vasculature. Its common and significant characteristics are disarray and inflammation in vasculature. We tested the hypothesis that the reversal of abdominal aortic aneurysm by pentagalloyl glucose-loaded nanoparticles (PGG-NPs) therapy that targets degraded elastin suppresses inflammatory and immune markers to ameliorate the pathophysiology of the disease in advance stage aneurysm in a porcine pancreatic elastase (PPE)-induced mouse model of AAA.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) disease causes dilation of the aorta, leading to aortic rupture and death if not treated early. It is the 14th leading cause of death in the U.S.

View Article and Find Full Text PDF

The 599 peptide has been previously shown to effectively deliver small interfering RNAs (siRNAs) to cancer cells, inducing targeted-oncogene silencing, with a consequent inhibition of tumor growth. Although effective, this study was undertaken to advance the 599 peptide siRNA-carrier design through L/D-amino acid stereochemical modifications. Consequently, 599 was modified to generate eight different peptide variants, incorporating either different stereochemical patterns of L/D-amino acids or a specific D-amino acid substitution.

View Article and Find Full Text PDF

Background: Skin aging is marked by progressive loss in elastin and collagen that causes wrinkling and sagging of skin. Tropoelastin (TE) is the precursor monomer of elastin secreted by cells that cross-links extracellularly to create functional elastic fibers. Cells maintain the capacity to make TE during the aging process.

View Article and Find Full Text PDF

Elastin is a key structural protein and its pathological degradation deterministic in aortic aneurysm (AA) outcomes. Unfortunately, using current diagnostic and clinical surveillance techniques the integrity of the elastic fiber network can only be assessed invasively. To address this, we employed fragmented elastin-targeting gold nanoparticles (EL-AuNPs) as a diagnostic tool for the evaluation of unruptured AAs.

View Article and Find Full Text PDF

Aim: Abdominal aortic aneurysms (AAA) is a life-threatening weakening and expansion of the abdominal aorta due to inflammatory cell infiltration and gradual degeneration of extracellular matrix (ECM). There are no pharmacological therapies to treat AAA. We tested the hypothesis that nanoparticle (NP) therapy that targets degraded elastin and delivers anti-inflammatory, anti-oxidative, and ECM stabilizing agent, pentagalloyl glucose (PGG) will reverse advance stage aneurysm in an elastase-induced mouse model of AAA.

View Article and Find Full Text PDF

: Abdominal aortic aneurysms (AAA) are characterized by a progressive disruption and weakening of the extracellular matrix (ECM) leading to dilation of the aorta which can be fatal if not treated. Current diagnostic imaging modalities provides little insight on the varying degree of ECM degeneration that precedes rupture in AAAs. Targeted delivery of contrast agents such as gold nanoparticles (GNPs) that bind to degraded matrix could prove useful when combined with computed tomography (CT) to provide a non-invasive surrogate marker of AAA rupture potential.

View Article and Find Full Text PDF

Medial arterial calcification (MAC) is a common outcome in diabetes and chronic kidney disease (CKD). It occurs as linear mineral deposits along the degraded elastin lamellae and is responsible for increased aortic stiffness and subsequent cardiovascular events. Current treatments for calcification, particularly in CKD, are predominantly focused on regulating the mineral disturbance and other risk factors.

View Article and Find Full Text PDF

Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts.

View Article and Find Full Text PDF

Degeneration of elastin plays a vital role in the pathology and progression of abdominal aortic aneurysm (AAA). Our previous study showed that pentagalloyl glucose (PGG), a core derivative of tannic acid, hinders the development of AAAs in a clinically relevant animal model when applied locally. In this study, we tested whether targeted nanoparticles (NPs) can deliver PGG to the site of an aneurysm and prevent aneurysmal growth by protecting elastin.

View Article and Find Full Text PDF

Rationale: Matrix metalloproteinases (MMPs)-mediated extracellular matrix destruction is the major cause of development and progression of abdominal aortic aneurysms. Systemic treatments of MMP inhibitors have shown effectiveness in animal models, but it did not translate to clinical success either because of low doses used or systemic side effects of MMP inhibitors. We propose a targeted nanoparticle (NP)-based delivery of MMP inhibitor at low doses to the abdominal aortic aneurysms site.

View Article and Find Full Text PDF

Over 300,000 heart valve replacements are performed annually to replace stenotic and regurgitant heart valves. Bioprosthetic heart valves (BHVs), derived from glutaraldehyde crosslinked (GLUT) porcine aortic valve leaflets or bovine pericardium are often used. However, valve failure can occur within 12-15 years due to calcification and/or progressive degeneration.

View Article and Find Full Text PDF

Vascular calcification is an important pathological condition associated with increased risk of cardiovascular mortality. Hydroxyapatite (HA) found in such deposits is the same polymorph of calcium (Ca) found in bone, indicating calcification may involve mechanisms akin to bone formation. Vascular smooth muscle cells (Vsmcs) have been shown to undergo phenotypic change to osteoblast-like cells.

View Article and Find Full Text PDF

Background And Aims: Elastin-specific medial arterial calcification (MAC) is an arterial disease commonly referred as Monckeberg's sclerosis. It causes significant arterial stiffness, and as yet, no clinical therapy exists to prevent or reverse it. We developed albumin nanoparticles (NPs) loaded with disodium ethylene diaminetetraacetic acid (EDTA) that were designed to target calcified elastic lamina when administrated by intravenous injection.

View Article and Find Full Text PDF

Unlabelled: Significant challenges remain in targeting drugs to diseased vasculature; most important being rapid blood flow with high shear, limited availability of stable targets, and heterogeneity and recycling of cellular markers. We developed nanoparticles (NPs) to target degraded elastic lamina, a consistent pathological feature in vascular diseases. In-vitro organ and cell culture experiments demonstrated that these NPs were not taken up by cells, but instead retained within the extracellular space; NP binding was proportional to the extent of elastic lamina damage.

View Article and Find Full Text PDF

Vascular calcification can be categorized into two different types. Intimal calcification related to atherosclerosis and elastin-specific medial arterial calcification (MAC). Osteoblast-like differentiation of vascular smooth muscle cells (VSMCs) has been shown in both types; however, how this relates to initiation of vascular calcification is unclear.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2h6jb0qco4qqm56ojc4oh8pdaq059cgb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once