Animal embryos are patterned by a handful of highly conserved inductive signals. Yet, in most cases, it is unknown which pattern features (i.e.
View Article and Find Full Text PDFDuring the first 2 hours of Drosophila development, precisely orchestrated nuclear cleavages, cytoskeletal rearrangements, and directed membrane growth lead to the formation of an epithelial sheet around the yolk. The newly formed epithelium remains relatively quiescent during the next hour as it is patterned by maternal inductive signals and zygotic gene products. We discovered that this mechanically quiet period is disrupted in embryos with high levels of dNTPs, which have been recently shown to cause abnormally fast nuclear cleavages and interfere with zygotic transcription.
View Article and Find Full Text PDFOptogenetic perturbations, live imaging, and time-resolved ChIP-seq assays in Drosophila embryos were used to dissect the ERK-dependent control of the HMG-box repressor Capicua (Cic), which plays critical roles in development and is deregulated in human spinocerebellar ataxia and cancers. We established that Cic target genes are activated before significant downregulation of nuclear localization of Cic and demonstrated that their activation is preceded by fast dissociation of Cic from the regulatory DNA. We discovered that both Cic-DNA binding and repression are rapidly reinstated in the absence of ERK activation, revealing that inductive signaling must be sufficiently sustained to ensure robust transcriptional response.
View Article and Find Full Text PDFEmbryonic development starts with cleavages, a rapid sequence of reductive divisions that result in an exponential increase of cell number without changing the overall size of the embryo. In Drosophila, the final four rounds of cleavages occur at the surface of the embryo and give rise to ∼6000 nuclei under a common plasma membrane. We use live imaging to study the dynamics of this process and to characterize the emergent nuclear packing in this system.
View Article and Find Full Text PDFThe thirteen nuclear cleavages that give rise to the Drosophila blastoderm are some of the fastest known cell cycles [1]. Surprisingly, the fertilized egg is provided with at most one-third of the dNTPs needed to complete the thirteen rounds of DNA replication [2]. The rest must be synthesized by the embryo, concurrent with cleavage divisions.
View Article and Find Full Text PDFClusters of differentiated cells contributing to organ structures retain the potential to re-enter the cell cycle and replace cells lost during development or upon damage. To do so, they must be designated spatially and respond to proper activation cues. Here we show that in the case of Drosophila differentiated larval tracheal cells, progenitor potential is conferred by the spatially restricted activity of the Snoo transcription cofactor.
View Article and Find Full Text PDFA population of Drosophila adult tracheal progenitor cells arises from differentiated cells of the larval main trachea that retain the ability to reenter the cell cycle and give rise to the multiple adult tracheal cell types. These progenitors are unique to the second tracheal metamere as homologous cells from other segments, express fizzy-related (fzr), the Drosophila homolog of CDH1 protein of the APC complex, and enter endocycle and do not contribute to adult trachea. Here, we examine the mechanisms for their quiescence and show that they reenter the cell cycle by expression of string/cdc25 through ecdysone.
View Article and Find Full Text PDFWe report that Notch signaling is essential for the switch from developmental plasticity to commitment during Caenorhabditis elegans embryogenesis. The GLP-1 and LIN-12 Notch receptors act to set a memory state that affects commitment of cells arising from the major ectodermal progenitor (AB blastomere) several cell divisions later, thereby preventing their forced reprogramming by an endoderm-determining transcription factor. In contrast to Notch-dependent cell fate induction, this activity is autonomous to the AB lineage, is independent of the known cell fate-inducing Notch ligands, and requires a putative secreted Notch ligand, Delta Serrate Lag-3 (DSL-3).
View Article and Find Full Text PDFWe review the application of Caenorhabditis elegans as a model system to understand key aspects of stem cell biology. The only bona fide stem cells in C. elegans are those of the germline, which serves as a valuable paradigm for understanding how stem-cell niches influence maintenance and differentiation of stem cells and how somatic differentiation is repressed during germline development.
View Article and Find Full Text PDF