Anticancer Agents Med Chem
September 2017
Nanotechnology has brought about the advent of personalized medicine in the era of targeted therapeutic strategies for cancer therapy. The ability to exploit tumor features for therapeutic gain has made it possible to manufacture more effective nanomedicines for cancer treatment. However, known obstacles, including the inability to overcome pathophysiological barriers of tumors, have impeded disease management.
View Article and Find Full Text PDFApplicability of the term "free radical" to organometallic radicals was studied by using the stereoselectivity of radical C-C bond formation as a diagnostic tool. Based on diastereoselectivity data, it was concluded that the reduction of π-bonded, Co2(CO)6-complexed propargyl cations with heterogeneous reducing agents (Zn, Mg) generates "free radicals", while homogeneous reductants (Cp2Co, Na-Ph2CO) produce "sequestered radicals", presumably associated with reductant-derived oxidized species. The latter are comparable in molecular volume to the requisite radical species, thus restricting the motion and conformational freedoms of converging, transition metal-complexed propargyl radicals.
View Article and Find Full Text PDF