Publications by authors named "Nardulli A"

In recent years, there has been an emphasis on personalizing breast cancer treatment in order to avoid the debilitating side effects caused by broad-spectrum chemotherapeutic drug treatment. Development of personalized medicine requires the identification of proteins that are expressed by individual tumors. Herein, we reveal the identity of plasma membrane proteins that are overexpressed in estrogen receptor α-positive, HER2-positive, and triple negative breast cancer cells.

View Article and Find Full Text PDF

Cancer cells secrete factors that influence adjacent cell behavior and can lead to enhanced proliferation and metastasis. To better understand the role of these factors in oncogenesis and disease progression, estrogen and progesterone receptor positive MCF-7 cells, triple negative breast cancer MDA-MB-231, DT22, and DT28 cells, and MCF-10A non-transformed mammary epithelial cells were grown in 3D cultures. A special emphasis was placed on triple negative breast cancer since these tumors are highly aggressive and no targeted treatments are currently available.

View Article and Find Full Text PDF

Durotaxis, a phenomenon that cells move according to changes in stiffness of the extra cellular matrix, has emerged as a crucial parameter controlling cell migration behavior. The current study provides a simple method to generate three-dimensional continuous stiffness variations without changing other physical characteristics of the extra cellular environment. Using Finite Element simulations, the stiffness and the stiffness gradient variations are evaluated quantitatively, leading to an analysis of the dependence of cell migration behavior on the substrate stiffness parameters.

View Article and Find Full Text PDF

Although substantial evidence has demonstrated that parity and 17β-estradiol (E2) reduce mammary carcinogenesis, it is not clear how this protection is conferred. Thus, we examined the effects of parity and E2 treatment in the mammary glands of ovariectomized 15 week-old virgin mice, 15 week-old primiparous mice, and 9 month-old retired breeders. E2 treatment significantly increased lipid peroxidation, protein carbonylation, and protein nitrosylation in the virgin mice, but not in the age-matched primiparous mice or retired breeders.

View Article and Find Full Text PDF

Although estrogen receptor alpha (ERα) and 17β-estradiol play critical roles in protecting the cerebral cortex from ischemia-induced damage, there has been some controversy about the expression of ERα in this region of the brain. We have examined ERα mRNA and protein levels in the cerebral cortices of female mice at postnatal days 5 and 17 and at 4, 13, and 18 months of age. We found that although ERα transcript levels declined from postnatal day 5 through 18 months of age, ERα protein levels remained stable.

View Article and Find Full Text PDF

DNA methylation is an epigenetic modification of DNA in which methyl groups are added at the 5-carbon position of cytosine. Aberrant DNA methylation, which has been associated with carcinogenesis, can be assessed in various biological fluids and potentially can be used as markers for detection of cancer. Analytically sensitive and specific assays for methylation targeting low-abundance and fragmented DNA are needed for optimal clinical diagnosis and prognosis.

View Article and Find Full Text PDF

17β-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone, and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical transcriptome using a mouse model system.

View Article and Find Full Text PDF

The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies.

View Article and Find Full Text PDF

The steroid hormone 17β-estradiol (E2) has profound effects on the uterus. However, with the E2-induced increase in uterine cell proliferation and metabolism comes increased production of reactive oxygen species (ROS). We examined the expression of an interactive network of oxidative stress response proteins including thioredoxin (Trx), Cu/Zn superoxide dismutase (SOD1), apurinic endonuclease (Ape1), and protein disulfide isomerase (PDI).

View Article and Find Full Text PDF

While it is well established that 17β-estradiol (E2) protects the rodent brain from ischemia-induced damage, it has been unclear how this neuroprotective effect is mediated. Interestingly, convincing evidence has also demonstrated that maintaining or increasing the expression of the oxidative stress response and DNA repair protein apurinic endonuclease 1 (Ape1) is instrumental in reducing ischemia-induced damage in the brain. Since E2 increases expression of the oxidative stress response proteins Cu/Zn superoxide dismutase and thioredoxin in the brain, we hypothesized that E2 may also increase Ape1 expression and that this E2-induced expression of Ape1 may help to mediate the neuroprotective effects of E2 in the brain.

View Article and Find Full Text PDF

Epigenetic modifications in eukaryotic genomes occur primarily in the form of 5-methylcytosine (5 mC). These modifications are heavily involved in transcriptional repression, gene regulation, development and the progression of diseases including cancer. We report a new single-molecule assay for the detection of DNA methylation using solid-state nanopores.

View Article and Find Full Text PDF

A number of studies have demonstrated that 17β-estradiol (E(2)) protects the brain from ischemia and yet the mechanism by which this hormone brings about its protective effect is unclear. Interestingly, like E(2), overexpression of the oxidative stress response protein Cu/Zn superoxide dismutase (SOD1), which plays a critical role in regulating reactive oxygen species, also protects the brain from ischemia. Because we previously showed that E(2) treatment of cultured mammary cells increases SOD1 expression, we hypothesized that E(2) might increase SOD1 expression in the brain and that this E(2)-mediated increase in SOD1 expression might help to protect the brain from ischemia.

View Article and Find Full Text PDF

Estrogen receptor α (ERα) is a ligand-activated transcription factor that, upon binding hormone, interacts with specific recognition sequences in DNA. An extensive body of literature has documented the association of individual regulatory proteins with ERα. It has recently become apparent that, instead of simply recruiting individual proteins, ERα recruits interconnected networks of proteins with discrete activities that play crucial roles in maintaining the structure and function of the receptor, stabilizing the receptor-DNA interaction, influencing estrogen-responsive gene expression, and repairing misfolded proteins and damaged DNA.

View Article and Find Full Text PDF

A search for quark compositeness in the form of quark contact interactions, based on hadronic jet pairs (dijets) produced in proton-proton collisions at √s=7 TeV, is described. The data sample of the study corresponds to an integrated luminosity of 2.9 pb(-1) collected with the CMS detector at the LHC.

View Article and Find Full Text PDF

A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 pb⁻¹ collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs.

View Article and Find Full Text PDF

Targets of steroidogenic factor 1 (SF1; also known as NR5A1 and AD4BP) have been identified within cells at every level of the hypothalamic-pituitary-gonadal and -adrenal axes, revealing SF1 to be a master regulator of major endocrine systems. Mouse embryos express SF1 in the genital ridge until Embryonic Day 13.5 (E13.

View Article and Find Full Text PDF
Article Synopsis
  • - Bose-Einstein correlations were studied in proton-proton collisions at the CERN Large Hadron Collider, specifically at center-of-mass energies of 0.9 and 2.36 TeV.
  • - The results showed an increase in the number of same-sign charged particle pairs that are emitted with small relative four-momentum, indicating a correlation effect.
  • - Additionally, as the number of particles produced in an event (particle multiplicity) increases, the size of the region from which these correlated particles emerge also grows significantly.
View Article and Find Full Text PDF

Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at square root of s = 7  TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/dη|(|η|<0.

View Article and Find Full Text PDF

Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.

View Article and Find Full Text PDF

Nuclear hormone receptors (NHRs) represent a large and diverse family of ligand-activated transcription factors involved in regulating development, metabolic homeostasis, salt balance and reproductive health. The ligands for these receptors are typically small hydrophobic molecules such as steroid hormones, thyroid hormone, vitamin D3 and fatty acid derivatives. The first NHR structural information appeared approximately 20 years ago with the solution and crystal structures of the DNA binding domains and was followed by the structure of the agonist and antagonist bound ligand binding domains of different NHR members.

View Article and Find Full Text PDF

Background: During the course of normal cellular metabolism, oxygen is consumed and reactive oxygen species (ROS) are produced. If not effectively dissipated, ROS can accumulate and damage resident proteins, lipids, and DNA. Enzymes involved in redox regulation and DNA repair dissipate ROS and repair the resulting damage in order to preserve a functional cellular environment.

View Article and Find Full Text PDF

Estrogen receptor alpha (ERalpha) binds to specific target DNA sequences, estrogen response elements (EREs), to regulate estrogen-responsive gene expression. The progesterone receptor (PR) gene has been used extensively as a marker of estrogen responsiveness. Although we previously identified cis elements within 1 kb of the PR-B transcription start site that are associated with ERalpha and help to confer estrogen responsiveness, the identification of ERalpha binding sites far removed from the transcription start site suggested that long-range regulation of this gene may occur.

View Article and Find Full Text PDF

Regulating gene expression is a complex process requiring the interaction of multiple transcription factors with their cognate recognition sequences. While these DNA-bound transcription factors are the primary drivers of gene expression, the capacity of a transcription factor to alter gene expression is tempered by its association with a host of coregulatory proteins that are recruited to the DNA-bound transcription factor. We have developed a novel approach to isolate large complexes of proteins associated with the DNA-bound estrogen receptor alpha (ERalpha) using an agarose-based electrophoretic mobility shift assay (EMSA).

View Article and Find Full Text PDF

Accumulation of reactive oxygen species (ROS) in cells damages resident proteins, lipids, and DNA. In order to overcome the oxidative stress that occurs with ROS accumulation, cells must balance free radical production with an increase in the level of antioxidant enzymes that convert free radicals to less harmful species. We identified two antioxidant enzymes, thioredoxin (Trx) and Trx reductase (TrxR), in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha).

View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 1 or redox factor-1 (Ape1/Ref-1) is a pleiotropic cellular protein involved in DNA repair and, through its redox activity, enhances the binding of a select group of transcription factors to their cognate recognition sequences in DNA. Thus, we were intrigued when we identified Ape1/Ref-1 and a number of DNA repair and oxidative stress proteins in a complex associated with the DNA-bound estrogen receptor alpha (ERalpha). Because Ape1/Ref-1 interacts with a number of transcription factors and influences their activity, we determined whether it might also influence ERalpha activity.

View Article and Find Full Text PDF