Publications by authors named "Nardos Kebede"

Article Synopsis
  • Spinal cord injury (SCI) leads to various problems, particularly affecting the gut and causing issues like intestinal dysmotility and atrophy of the enteric nervous system (ENS).
  • New research suggests that changes in gut microbiome due to SCI might be linked to these gut issues, and that dietary interventions could help aid recovery.
  • Specifically, using dietary fiber such as inulin can prevent ENS damage and help restore gut function in injured mice, highlighting a connection between diet, gut bacteria, and immune response that could inform future treatments for bowel problems following spinal injuries.
View Article and Find Full Text PDF

This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in a plethora of physiological dysfunctions across all body systems, including intestinal dysmotility and atrophy of the enteric nervous system (ENS). Typically, the ENS has capacity to recover from perturbation, so it is unclear why intestinal pathophysiologies persist after traumatic spinal injury. With emerging evidence demonstrating SCI-induced alterations to the gut microbiome composition, we hypothesized that modulation of the gut microbiome could contribute to enteric nervous system recovery after injury.

View Article and Find Full Text PDF

Exposure to chronic and unpredictable stressors can precipitate mood-related disorders in humans, particularly in individuals with pre-existing mental health challenges. L-type calcium channels (LTCCs) have been implicated in numerous neuropsychiatric disorders, as LTCC encoding genes have been identified as candidate risk factors for neuropsychiatric illnesses. In these sets of experiments, we sought to examine the ability of LTCC blockade to alter depression, anxiety, and anhedonic-related behavioral responses to chronic unpredictable stress (CUS) exposure in female and male rats.

View Article and Find Full Text PDF

Optimization of effort-related choices is impaired in depressive disorders. Acetylcholine (ACh) and dopamine (DA) are linked to depressive disorders, and modulation of ACh tone in the ventral tegmental area (VTA) affects mood-related behavioral responses in rats. However, it is unknown if VTA ACh mediates effort-choice behaviors.

View Article and Find Full Text PDF

Background: Tobacco use in humans is a long-standing public health concern. Flavors are common additives in tobacco and alternative tobacco products, added to mask nicotine's harsh orosensory effects and increase the appeal of these products. Animal models are integral for investigating nicotine use and addiction and are helpful for understanding the effects of flavor additives on the use of nicotine delivery products.

View Article and Find Full Text PDF

Acetylcholine is an important neuromodulator of the mesolimbic dopamine (DA) system, which itself is a mediator of motivated behavior. Motivated behavior can be described by two primary components, termed directional and activational motivation, both of which can be examined and dissociated using effort-choice tasks. The directional component refers to motivated behavior directed towards reinforcing stimuli and away from aversive stimuli.

View Article and Find Full Text PDF