Mast cells play an important role in disease pathogenesis by secreting immunomodulatory molecules. Mast cells are primarily activated by the crosslinking of their high affinity IgE receptors (FcεRI) by antigen bound immunoglobulin (Ig)E antibody complexes. However, mast cells can also be activated by the mas related G protein-coupled receptor X2 (MRGPRX2), in response to a range of cationic secretagogues, such as substance P (SP), which is associated with pseudo-allergic reactions.
View Article and Find Full Text PDFSesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics.
View Article and Find Full Text PDFPeptide based therapeutics are desirable owing to their high biological specificity. However, a number of these fail in clinical testing due to an adverse inflammatory response. Mast cells play a key role in directing the host response to drugs and related products.
View Article and Find Full Text PDFBiodegradable polymeric nanoparticles (NPs) such as poly(lactic-co-glycolic acid) (PLGA) and polyvinyl alcohol (PVA) have been used as drug delivery systems for natural and synthetic compounds and are designed to control the loading and release of biodegradable materials to target cells, tissues, and organs. Eremophilane-type sesquiterpenes have anti-inflammatory properties but are lipophilic, cytotoxic, and not biocompatible with many cells. To determine whether biodegradable PLGA/PVA could improve the biocompatibility of sesquiterpenes, sesquiterpene-loaded NPs were synthesized and their effects on human mast cells (LAD2), the major effector cells of allergic inflammation, were determined.
View Article and Find Full Text PDFBiochem Pharmacol
October 2018
Anaphylatoxin C3a and adenosine receptors (AR) are implicated in the inflammatory process associated with allergic rhinitis and asthma by modifying mast cell (MC) responses. Possible interactions between these G-protein coupled receptor (GPCR) pathways in MCs have not yet been demonstrated. LAD2 human MC were stimulated with C3a in the presence or absence of AR agonists and antagonists and their adhesion, chemotaxis and mediator release were measured.
View Article and Find Full Text PDFDendritic cell (DC) activation induces expression of co-stimulatory surface molecules, as well as migration into secondary lymphoid organs, where they activate naïve T-cells. A family of plant derivatives, eremophilane-type petasite sesquiterpenes, can regulate the immune system through DC targeting due to their anti-inflammatory effects. Peroxisome proliferator-activated receptor gamma (PPARγ) is involved in inhibition of inflammatory responses and induction of DCs to acquire a mucosal phenotype.
View Article and Find Full Text PDFMast cells play a distinct role in the innate immune response. Engineered microenvironments for the express purpose of influencing mast cell activity will provide a novel means of designing biomaterials, as well as a means to systematically investigate mast cell biology in a 3D setting. Here, the effect of nanoscaffolds composed of self-assembling peptides, namely (RADA) , on bone-marrow-derived murine mast cell (BMMC) activity is reported.
View Article and Find Full Text PDFBackground: Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models.
View Article and Find Full Text PDFBackground: Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2012
Asthma affects an estimated 300 million people worldwide and accounts for 1 of 250 deaths and 15 million disability-adjusted life years lost annually. Plastic-adherent bone marrow-derived cell (BMC) administration holds therapeutic promise in regenerative medicine. However, given the low cell engraftment in target organs, including the lung, cell replacement cannot solely account for the reported therapeutic benefits.
View Article and Find Full Text PDFWe have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins.
View Article and Find Full Text PDF