Publications by authors named "Narayanaswamy Shamala"

Gamma-aminobutyric acid (GABA, gammaAbu), an unsubstituted gamma-amino acid, is an important inhibitory neurotransmitter in the mammalian brain. The role of GABA in the treatment of epilepsy has triggered a great deal of interest in substituted gamma-amino acids, which may serve as GABA analogs, acting as inhibitors of GABA aminotransferase. Pregabalin (Pgn), a well-known antiepileptic drug, is also a beta-substituted gamma3-amino acid.

View Article and Find Full Text PDF

The crystal structure of a tripeptide Boc-Leu-Val-Ac12 c-OMe (1) is determined, which incorporates a bulky 1-aminocyclododecane-1-carboxylic acid (Ac12 c) side chain. The peptide adopts a semi-extended backbone conformation for Leu and Val residues, while the backbone torsion angles of the C(α,α) -dialkylated residue Ac12 c are in the helical region of the Ramachandran map. The molecular packing of 1 revealed a unique supramolecular twisted parallel β-sheet coiling into a helical architecture in crystals, with the bulky hydrophobic Ac12 c side chains projecting outward the helical column.

View Article and Find Full Text PDF

Unconstrained γ(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (αγ)n sequences. The C12 helical conformation for the decapeptide, Boc-[Leu-γ(4)(R)Val]5-OMe, is established in crystals by X-ray diffraction. A regular C12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-[Leu-γ(4)(R)Val]9-OMe, and a designed 16 residue (αγ)n peptide, incorporating variable side chains.

View Article and Find Full Text PDF

Monosubstituted γ(4)-residues (γ(4)Leu, γ(4)Ile, and γ(4)Val) form helices even in short homooligomeric sequences. C14 helix formation is established by X-ray diffraction in homooligomeric (γ)n tetra-, hexa- and decapeptide sequences demonstrating the high propensity of γ residues, with proteinogenic side chains, to adopt locally folded conformations.

View Article and Find Full Text PDF

The crystal structures of several designed peptide hairpins have been determined in order to establish features of molecular conformations and modes of aggregation in the crystals. Hairpin formation has been induced using a centrally positioned (D)Pro-Xxx segment (Xxx = (L)Pro, Aib, Ac6c, Ala; Aib = α-aminoisobutyric acid; Ac6c = 1-aminocyclohexane-1-carboxylic acid). Structures of the peptides Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Tyr-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (2, polymorphic forms labeled as 2a and 2b), Boc-Leu-Val-Val-(D)Pro-(L)Pro-Leu-Val-Val-OMe (3), Boc-Leu-Phe-Val-(D)Pro-Aib-Leu-Phe-Val-OMe (4, polymorphic forms labeled as 4a and 4b), Boc-Leu-Phe-Val-(D)Pro-Ac6c-Leu-Phe-Val-OMe (5) and Boc-Leu-Phe-Val-(D)Pro-Ala-Leu-Phe-Val-OMe (6) are described.

View Article and Find Full Text PDF

In the current study, the puckering states of the Proline ring occurring in diproline segments ((L) Pro-(L) Pro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro-Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/-) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group.

View Article and Find Full Text PDF

Crystal structures of eight peptide β-hairpins in the sequence Boc-Leu-Phe-Val-Xxx-Yyy-Leu-Phe-Val-OMe revealed that the Phe(2) and Phe(7) aromatic rings are in close spacial proximity, with the centroid-centroid distance (R(cen)) of 4.4-5.4 Å between the two phenyl rings.

View Article and Find Full Text PDF

The effect of gem-dialkyl substituents on the backbone conformations of β-amino acid residues in peptides has been investigated by using four model peptides: Boc-Xxx-β(2,2)Ac(6)c(1-aminomethylcyclohexanecarboxylic acid)-NHMe (Xxx = Leu (1), Phe (2); Boc = tert-butyloxycarbonyl) and Boc-Xxx-β(3,3)Ac(6)c(1-aminocyclohexaneacetic acid)-NHMe (Xxx = Leu (3), Phe (4)). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc-Leu-β(2,2)Ac(6)c-NHMe (1) established a C(11) hydrogen-bonded turn in the αβ-hybrid sequence.

View Article and Find Full Text PDF

The effect of incorporation of a centrally positioned Ac(6)c-Xxx segment where Xxx = (L)Val/(D)Val into a host oligopeptide composed of l-amino acid residues has been investigated. Studies of four designed octapeptides Boc-Leu-Phe-Val-Ac(6)c-Xxx-Leu-Phe-Val-OMe (Xxx = (D)Val 1, (L)Val 2) Boc-Leu-Val-Val-Ac(6)c-Xxx-Leu-Val-Val-OMe (Xxx = (D)Val 3, (L)Val 4) are reported. Diagnostic nuclear Overhouse effects characteristic of hairpin conformations are observed for Xxx = (D)Val peptides (1 and 3) while continuous helical conformation characterized by sequential N(i)H ↔ N(i+1)H NOEs are favored for Xxx = (L)Val peptides (2 and 4) in methanol solutions.

View Article and Find Full Text PDF

The Aib-D Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III β-turns. The occurrence of prime turns facilitates the formation of β-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-DAla-Leu-Phe-Val-OMe (1) has been previously shown to form a β-hairpin in the crystalline state and in solution.

View Article and Find Full Text PDF

The covalent linkage between the side-chain and the backbone nitrogen atom of proline leads to the formation of the five-membered pyrrolidine ring and hence restriction of the backbone torsional angle ϕ to values of -60 °± 30° for the L-proline. Diproline segments constitute a chain fragment with considerably reduced conformational choices. In the current study, the conformational states for the diproline segment (( L) Pro-( L) Pro) found in proteins has been investigated with an emphasis on the cis and trans states for the Pro-Pro peptide bond.

View Article and Find Full Text PDF

An 18-residue sequence Boc-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Gly-Pro-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe (UK18) was designed to examine the effect of introducing a Gly-Pro segment into the middle of a potentially helical peptide. The crystal structures of two polymorphic forms yielded a view of the conformation of three independent molecules. Form 1 (space group P2(1)2(1)2(1,) a = 14.

View Article and Find Full Text PDF

A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the "water wire" and "peptide nanotube" is electrostatic in origin.

View Article and Find Full Text PDF

The alpha-aminoisobutyric acid-D-proline (Aib-(D)Pro) dipeptide is an obligatory Type I' beta-turn forming segment that nucleates hairpin formation.

View Article and Find Full Text PDF

The role of N-terminus diproline segments in facilitating helical folding in short peptides has been investigated in a set of model hexapeptides of the type Piv-Xxx-Yyy-Aib-Leu-Aib-Phe-OMe (Piv, pivaloyl). Nine sequences have been investigated with the following N-terminus dipeptide segments: (D)Pro-Ala (4) and Pro-PsiPro (5, Psi, pseudoproline), Ala-Ala (6), Ala-Pro (7), Pro-Ala (8), Aib-Ala (9), Ala-Aib (10). The analog sequences Piv-Pro-Pro-Ala-Leu-Aib-Phe-OMe (2) and Piv-Pro-Pro-Ala-Aib-Ala-Aib-OMe (3) have also been studied.

View Article and Find Full Text PDF

Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((D)Xxx = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane).

View Article and Find Full Text PDF

The crystallographic observation of a hydrophobic, empty channel (diameter approximately 5.2 A) in the peptide Boc-(D)Pro-Aib-Leu-Aib-Val-OMe, prompted the investigation of the analog Boc-(D)Pro-Aib-Val-Aib-Val-OMe in which the side chain at position 3 was shortened, resulting in the structure of a channel (diameter approximately 7.5 A) containing a one-dimensional wire of water molecules.

View Article and Find Full Text PDF

Nature has used the all-alpha-polypeptide backbone of proteins to create a remarkable diversity of folded structures. Sequential patterns of 20 distinct amino acids, which differ only in their side chains, determine the shape and form of proteins. Our understanding of these specific secondary structures is over half a century old and is based primarily on the fundamental elements: the Pauling alpha-helix and beta-sheet.

View Article and Find Full Text PDF

Gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn) is an achiral, conformationally constrained gamma amino acid residue. A survey of available crystal structures of Gpn peptides reveals that the torsion angles about the C(gamma)-C(beta) (theta(1)) and C(beta)-C(alpha) (theta(2)) bonds are overwhelmingly limited to gauche, gauche (g(+)g(+)/g(-)g(-)) conformations. The Gpn residue forms C(7) and C(9) hydrogen bonds in which the donor and acceptor atoms come from the flanking peptide units.

View Article and Find Full Text PDF

The pseudoproline residue (Psi Pro, L-2,2-dimethyl-1,3-thiazolidine-4-carboxylic acid) has been introduced into heterochiral diproline segments that have been previously shown to facilitate the formation of beta-hairpins, containing central two and three residue turns. NMR studies of the octapeptide Boc-Leu-Phe-Val-(D)Pro-Psi Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Val-Val-(D)Pro-Psi Pro-Leu-Val-Val-OMe (2), and the nonapeptide sequence Boc-Leu-Phe-Val-(D)Pro-Psi Pro-(D)Ala-Leu-Phe-Val-OMe (3) established well-registered beta-hairpin structures in chloroform solution, with the almost exclusive population of the trans conformation for the peptide bond preceding the Psi Pro residue. The beta-hairpin conformation of 1 is confirmed by single crystal X-ray diffraction.

View Article and Find Full Text PDF

Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C(12) hydrogen bonded turns which may be considered as backbone expanded analogues of C(10) (beta-turns) found in alphaalpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alphagamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C(gamma)-C(beta) (theta(1)) and C(beta)-C(alpha) (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment.

View Article and Find Full Text PDF

Gabapentin, a widely used antiepileptic drug, crystallizes in multiple polymorphic forms. A new crystal form of gabapentin monohydrate in the space group Pbca is reported and the packing arrangement compared with that of a previously reported polymorph in the space group P2(1)/c [Ibers, J.A.

View Article and Find Full Text PDF