Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive.
View Article and Find Full Text PDFNon-Watson-Crick pairs like the G·U wobble are frequent in RNA duplexes. Their geometric dissimilarity (nonisostericity) with the Watson-Crick base pairs and among themselves imparts structural variations decisive for biological functions. Through a novel circular representation of base pairs, a simple and general metric scheme for quantification of base-pair nonisostericity, in terms of residual twist and radial difference that can also envisage its mechanistic effect, is proposed.
View Article and Find Full Text PDFThe low affinity of peptide nucleic acid (PNA) to hybridize with DNA in the presence of a mismatch endows PNA with a high degree of discriminatory capacity that has been exploited in therapeutics for the selective inhibition of the expression of point-mutated genes. To obtain a structural basis for this intriguing property, molecular dynamics simulations are carried out on PNA x DNA duplexes formed at the Ki-ras proto-oncogene, comprising the point-mutated (GAT), and the corresponding wild-type (GGT) codon 12. The designed PNA forms an A.
View Article and Find Full Text PDFThe NMR structure of 2',5' d(GGGGCCCC) was determined to gain insights into the structural differences between 2',5'- and 3',5'-linked DNA duplexes that may be relevant in elucidating nature's choice of sugar-phosphate links to encode genetic information. The oligomer assumes a duplex with extended nucleotide repeats formed out of mostly N-type sugar puckers. With the exception of the 5'-terminal guanine that assumes the syn glycosyl conformation, all other bases prefer the anti glycosyl conformation.
View Article and Find Full Text PDF