Publications by authors named "Narayanan Veeraraghavan"

Universal newborn screening (NBS) is a highly successful public health intervention. Archived dried bloodspots (DBS) collected for NBS represent a rich resource for population genomic studies. To fully harness this resource in such studies, DBS must yield high-quality genomic DNA (gDNA) for whole genome sequencing (WGS).

View Article and Find Full Text PDF

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns.

View Article and Find Full Text PDF

While many genetic diseases have effective treatments, they frequently progress rapidly to severe morbidity or mortality if those treatments are not implemented immediately. Since front-line physicians frequently lack familiarity with these diseases, timely molecular diagnosis may not improve outcomes. Herein we describe Genome-to-Treatment, an automated, virtual system for genetic disease diagnosis and acute management guidance.

View Article and Find Full Text PDF

Background: Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is the most common congenital anomaly and a major cause of infant morbidity and mortality. While morbidity and mortality are highest in infants with underlying genetic conditions, molecular diagnoses are ascertained in only ~20% of cases using widely adopted genetic tests. Furthermore, cost of care for children and adults with CHD has increased dramatically.

View Article and Find Full Text PDF

To investigate the diagnostic and clinical utility of a partially automated reanalysis pipeline, forty-eight cases of seriously ill children with suspected genetic disease who did not receive a diagnosis upon initial manual analysis of whole-genome sequencing (WGS) were reanalyzed at least 1 year later. Clinical natural language processing (CNLP) of medical records provided automated, updated patient phenotypes, and an automated analysis system delivered limited lists of possible diagnostic variants for each case. CNLP identified a median of 79 new clinical features per patient at least 1 year later.

View Article and Find Full Text PDF

The second Newborn Sequencing in Genomic Medicine and Public Health study was a randomized, controlled trial of the effectiveness of rapid whole-genome or -exome sequencing (rWGS or rWES, respectively) in seriously ill infants with diseases of unknown etiology. Here we report comparisons of analytic and diagnostic performance. Of 1,248 ill inpatient infants, 578 (46%) had diseases of unknown etiology.

View Article and Find Full Text PDF

By informing timely targeted treatments, rapid whole-genome sequencing can improve the outcomes of seriously ill children with genetic diseases, particularly infants in neonatal and pediatric intensive care units (ICUs). The need for highly qualified professionals to decipher results, however, precludes widespread implementation. We describe a platform for population-scale, provisional diagnosis of genetic diseases with automated phenotyping and interpretation.

View Article and Find Full Text PDF

Genetic disorders are a leading cause of morbidity and mortality in infants. Rapid whole-genome sequencing (rWGS) can diagnose genetic disorders in time to change acute medical or surgical management (clinical utility) and improve outcomes in acutely ill infants. We report a retrospective cohort study of acutely ill inpatient infants in a regional children's hospital from July 2016-March 2017.

View Article and Find Full Text PDF

Genetic disorders are a leading cause of morbidity and mortality in infants in neonatal and pediatric intensive care units (NICU/PICU). While genomic sequencing is useful for genetic disease diagnosis, results are usually reported too late to guide inpatient management. We performed an investigator-initiated, partially blinded, pragmatic, randomized, controlled trial to test the hypothesis that rapid whole-genome sequencing (rWGS) increased the proportion of NICU/PICU infants receiving a genetic diagnosis within 28 days.

View Article and Find Full Text PDF

Inhibition of platelet reactivity is a common therapeutic strategy in secondary prevention of cardiovascular disease. Genetic and environmental factors influence inter-individual variation in platelet reactivity. Identifying genes that contribute to platelet reactivity can reveal new biological mechanisms and possible therapeutic targets.

View Article and Find Full Text PDF

Kawasaki disease (KD) is the most common acquired pediatric heart disease. We analyzed Whole Genome Sequences (WGS) from a 6-member African American family in which KD affected two of four children. We sought rare, potentially causative genotypes by sequentially applying the following WGS filters: sequence quality scores, inheritance model (recessive homozygous and compound heterozygous), predicted deleteriousness, allele frequency, genes in KD-associated pathways or with significant associations in published KD genome-wide association studies (GWAS), and with differential expression in KD blood transcriptomes.

View Article and Find Full Text PDF

The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice.

View Article and Find Full Text PDF

To comprehensively evaluate a European-American child with severe hypertension, whole-exome sequencing (WES) was performed on the child and parents, which identified causal variation of the proband's early-onset disease. The proband's hypertension was resistant to treatment, requiring a multiple drug regimen including amiloride, spironolactone, and hydrochlorothiazide. We suspected a monogenic form of hypertension because of the persistent hypokalemia with low plasma levels of renin and aldosterone.

View Article and Find Full Text PDF

Background: The decreasing costs of sequencing are driving the need for cost effective and real time variant calling of whole genome sequencing data. The scale of these projects are far beyond the capacity of typical computing resources available with most research labs. Other infrastructures like the cloud AWS environment and supercomputers also have limitations due to which large scale joint variant calling becomes infeasible, and infrastructure specific variant calling strategies either fail to scale up to large datasets or abandon joint calling strategies.

View Article and Find Full Text PDF

Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.

View Article and Find Full Text PDF

As the amount of human genomic sequence available from personal genomes and exomes has increased, so too has the observation of genomic positions having two or more alternative alleles, so-called multiallelic sites. For portions of the haploid genome that are present in more than one copy, including segmental duplications, variation at such multisite variant positions becomes even more complex. Despite the frequency of multiallelic variants, a number of commonly used resources and tools in genomic research and diagnostics do not support these multiallelic variants all together or require special modifications.

View Article and Find Full Text PDF

Background: Rare genetic variants influence blood pressure (BP).

Methods And Results: Whole-exome sequencing was performed on DNA samples from 17 956 individuals of European ancestry and African ancestry (14 497, first-stage discovery and 3459, second-stage discovery) to examine the effect of rare variants on hypertension and 4 BP traits: systolic BP, diastolic BP, pulse pressure, and mean arterial pressure. Tests of ≈170 000 common variants (minor allele frequency, ≥1%; statistical significance, P≤2.

View Article and Find Full Text PDF