Publications by authors named "Narayanan T Narayanan"

Dispersions of nanodiamond (average size ∼6 nm) within dielectric insulator mineral oil are reported for their enhanced thermal conductivity properties and potential applications in thermal management. Dynamic and kinematic viscosities-very important parameters in thermal management by nanofluids-are investigated. The dependence of the dynamic viscosity is well-described by the theoretical predictions of Einstein's model.

View Article and Find Full Text PDF

Here, we design and develop high-power electric double-layer capacitors (EDLCs) using carbon-based three dimensional (3-D) hybrid nanostructured electrodes. 3-D hybrid nanostructured electrodes consisting of vertically aligned carbon nanotubes (CNTs) on highly porous carbon nanocups (CNCs) were synthesized by a combination of anodization and chemical vapor deposition techniques. A 3-D electrode-based supercapacitor showed enhanced areal capacitance by accommodating more charges in a given footprint area than that of a conventional CNC-based device.

View Article and Find Full Text PDF

Two-dimensional (2D) atomic layers derived from bulk layered materials are very interesting from both scientific and application viewpoints, as evidenced from the story of graphene. Atomic layers of several such materials such as hexagonal boron nitride (h-BN) and dichalcogenides are examples that complement graphene. The observed unconventional properties of graphene has triggered interest in doping the hexagonal honeycomb lattice of graphene with atoms such as boron (B) and nitrogen (N) to obtain new layered structures.

View Article and Find Full Text PDF

The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale "elbow" junctions and nanotube covalent interconnections.

View Article and Find Full Text PDF

A stable magnetic nanocomposite of collagen and superparamagnetic iron oxide nanoparticles (SPIONs) is prepared by a simple process utilizing protein wastes from leather industry. Molecular interaction between helical collagen fibers and spherical SPIONs is proven through calorimetric, microscopic and spectroscopic techniques. This nanocomposite exhibited selective oil absorption and magnetic tracking ability, allowing it to be used in oil removal applications.

View Article and Find Full Text PDF