Publications by authors named "Narayan P Niraula"

This is the first report of a fully annotated genomic sequence of Streptomyces spectabilis NRRL-2792, isolated and identified by The Upjohn Company in 1961. The genome was assembled into a single scaffold for annotation and analysis. The chromosome is linear, 9.

View Article and Find Full Text PDF

Alkenes are industrially important platform chemicals with broad applications. In this study, we report a direct microbial biosynthesis of terminal alkenes from fermentable sugars by harnessing a P450 fatty acid (FA) decarboxylase from (OleT). We first characterized OleT and demonstrated its in vitro HO-independent activities towards linear C10:0-C18:0 FAs, with higher activity for C16:0-C18:0 FAs.

View Article and Find Full Text PDF

In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character.

View Article and Find Full Text PDF

Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of 4.

View Article and Find Full Text PDF

Biocatalytic transfer of oxygen in isolated cytochrome P450 or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. Cytochrome P450 CYP105P2 was isolated from Streptomyces peucetius that showed a high degree of amino acid identity with hydroxylases. Previously performed homology modeling, and subsequent docking of the model with flavone, displayed a reasonable docked structure.

View Article and Find Full Text PDF

Cytochrome P450 CYP107AJ1, which was isolated from Streptomyces peucetius and showed high homology with peroxygenases, catalyzed a dealkylation reaction with hydrogen peroxide to provide electrons, protons and oxygen, evading the requirement for a supporting redox protein. Preliminary investigation of its transcriptional level in S. peucetius showed significant expression.

View Article and Find Full Text PDF

Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Here, we report the identification, cloning, and characterization of panK-sp from Streptomyces peucetius ATCC 27952. The gene encoded a protein of 332 amino acids with a calculated molecular mass of 36.

View Article and Find Full Text PDF

Two superoxide dismutase (SOD) genes; sod1 and sod2, from Streptomyces peucetius ATCC 27952 show high similarity to other known SODs from Streptomyces coelicolor A3(2) and Streptomyces avermitilis MA-4680. These sod1 and sod2 were cloned into pIBR25 expression vector under a strong ermE* promoter to enhance secondary metabolites from Streptomyces strains. The recombinant expression plasmids; pIBR25SD1 and pIBR25SD2, were constructed to overexpress sod1 and sod2 respectively to enhance production of doxorubicin (DXR) in S.

View Article and Find Full Text PDF

Doxorubicin (DXR) is an anthracycline-type polyketide, typically produced by Streptomyces peucetius ATCC 27952. Like the biosynthesis of other secondary metabolites in Streptomyces species, DXR biosynthesis is tightly regulated, and a very low level of DXR production is maintained in the wild-type strain. Despite that DXR is one of the most broadly used and clinically important anticancer drugs, a traditional strain improvement strategy has long been practiced via recursive random mutagenesis, with little understanding of the molecular genetic basis underlying such enhanced DXR production.

View Article and Find Full Text PDF

Doxorubicin (DXR), produced by Streptomyces peucetius ATCC 27952, exhibits potent antitumor activity against various cancer cell lines. Considerable time has lapsed since the biosynthesis of DXR and its overproduction was first summarized. Based on biosynthetic studies and product analysis, various factors affecting its production by the parental strain, S.

View Article and Find Full Text PDF

Annotation of genome of Streptomyces peucetius revealed a putative phenylacetic acid degradation NADH oxidoreductase. RT-PCR analysis of the gene readily showed notable transcription in its native state. The transcription level of paaE when the host is grown on phenylacetic acid showed increased transcription.

View Article and Find Full Text PDF

Biosynthesis of doxorubicin (DXR) is tightly regulated, limiting its production in Streptomyces peucetius cultures. The regulatory genes dnrN, dnrI, afsR, and metK1-sp from S. peucetius ATCC 27952 were cloned into the pIBR25 expression vector under the control of the strong ermE* promoter to enhance DXR production.

View Article and Find Full Text PDF

The resistance genes drrABC from Streptomyces peucetius ATCC 27952 were cloned into the pIBR25 expression vector under a strong ermE* promoter to enhance doxorubicin (DXR) production. The recombinant expression plasmids, pDrrAB25, pDrrC25 and pDrrABC25, were constructed to overexpress drrAB, drrC and drrABC, respectively, in S. peucetius ATCC 27952.

View Article and Find Full Text PDF

To enhance doxorubicin (DXR) production, the structural sugar biosynthesis genes desIII and desIV from Streptomyces venezuelae ATCC 15439 and the glycosyltransferase pair dnrS/dnrQ from Streptomyces peucetius ATCC 27952 were cloned into the expression vector pIBR25, which contains a strong ermE promoter. The recombinant plasmids pDnrS25 and pDnrQS25 were constructed for overexpression of dnrS and the dnrS/dnrQ pair, whereas pDesSD25 and pDesQS25 were constructed to express desIII/desIV and dnrS/dnrQ-desIII/desIV, respectively. All of these recombinant plasmids were introduced into S.

View Article and Find Full Text PDF