In myelofibrosis, the C-reactive protein (CRP)/albumin ratio (CAR) and the Glasgow Prognostic Score (GPS) add prognostic information independently of the Dynamic International Prognostic Scoring System (DIPSS). Their prognostic impact, if molecular aberrations are considered, is currently unknown. We performed a retrospective chart review of 108 MF patients (prefibrotic MF n = 30; primary MF n = 56; secondary MF n = 22; median follow-up 42 months).
View Article and Find Full Text PDFBackground/aim: Carbonic anhydrase 12 (CA12) is a membrane-associated enzyme that is highly expressed on many human cancers. It is a poor prognostic marker and hence an attractive target for cancer therapy. This study aimed to develop a humanized CA12-antibody with anti-cancer activity.
View Article and Find Full Text PDFCarbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) were proposed as potential targets for cancer therapy more than 20 years ago. However, to date, there are only very few antibodies that have been described to specifically target CA9 and CA12 and also block the enzymatic activity of their targets. One of the early stage bottlenecks in identifying CA9- and CA12-inhibiting antibodies has been the lack of a high-throughput screening system that would allow for rapid assessment of inhibition of the targeted carbon dioxide hydratase activity of carbonic anhydrases.
View Article and Find Full Text PDFThe development of resistance to virtually all current antibiotics makes the discovery of new antimicrobial compounds with novel protein targets an urgent challenge. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is an essential metallo-enzyme for growth and proliferation in many bacteria, acting in the desuccinylation of N-succinyl-L,L-diaminopimelic acid (SDAP) in a late stage of the anabolic pathway towards both lysine and a crucial building block of the peptidoglycan cell wall. L-Captopril, which has been shown to exhibit very promising inhibitory activity in vitro against DapE and has attractive drug-like properties, nevertheless does not target DapE in bacteria effectively.
View Article and Find Full Text PDFThe emergence of bacterial strains that are resistant to virtually all currently available antibiotics underscores the importance of developing new antimicrobial compounds. N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a metallohydrolase involved in the meso-diaminopimelate (mDAP)/lysine biosynthetic pathway necessary for lysine biosynthesis and for building the peptidoglycan cell wall. Because DapE is essential for Gram-negative and some Gram-positive bacteria, DapE has been proposed as a good target for antibiotic development.
View Article and Find Full Text PDFMicrosomal prostaglandin E synthase-1 (MPGES1) is induced during an inflammatory reaction from low basal levels by pro-inflammatory cytokines and subsequently involved in the production of the important mediator of inflammation, prostaglandin E(2). Nonsteroidal anti-inflammatory drugs prevent prostaglandin E(2) production by inhibiting the upstream enzymes cyclooxygenases 1 and 2. In contrast to these conventional drugs, a new generation of NSAIDs targets the terminal enzyme MPGES1.
View Article and Find Full Text PDF