Thiol-dependent redox regulation of enzyme activities plays a central role in regulating photosynthesis. Besides the regulation of metabolic pathways, alternative electron transport is subjected to thiol-dependent regulation. We investigated the regulation of O2 reduction at photosystem I.
View Article and Find Full Text PDFProduction of hard X-ray via inverse Compton scattering at photon energies below 100 keV range aimed at potential applications in medicine and material research is reported. Experiments have been performed at the Brookhaven National Laboratory, Accelerator Test Facility, employing the counter collision of a 70 MeV, 0.3 nC electron beam with a near infra-red Nd: YAG laser (1064 nm wavelength) pulse containing ~ 100 mJ in a single shot basis.
View Article and Find Full Text PDFPROTON GRADIENT REGULATION5 (PGR5) is thought to promote cyclic electron flow, and its deficiency impairs photosynthetic control and increases photosensitivity of photosystem (PS) I, leading to seedling lethality under fluctuating light (FL). By screening for Arabidopsis (Arabidopsis thaliana) suppressor mutations that rescue the seedling lethality of pgr5 plants under FL, we identified a portfolio of mutations in 12 different genes. These mutations affect either PSII function, cytochrome b6f (cyt b6f) assembly, plastocyanin (PC) accumulation, the CHLOROPLAST FRUCTOSE-1,6-BISPHOSPHATASE1 (cFBP1), or its negative regulator ATYPICAL CYS HIS-RICH THIOREDOXIN2 (ACHT2).
View Article and Find Full Text PDFThe PROTON GRADIENT REGULATION5 (PGR5) protein is required for trans-thylakoid proton gradient formation and acclimation to fluctuating light (FL). PGR5 functionally interacts with two other thylakoid proteins, PGR5-like 1 (PGRL1) and 2 (PGRL2); however, the molecular details of these interactions are largely unknown. In the Arabidopsis (Arabidopsis thaliana) pgr5-1 mutant, the PGR5G130S protein accumulates in only small amounts.
View Article and Find Full Text PDFUnder natural environmental conditions, changes in light intensity and temperature are closely interwoven, and of all organelles, only chloroplasts react strongly upon alterations of these two parameters. We review increasing evidence indicating that changes in chloroplast metabolism are critical for the comprehensive cellular answer in a challenging environment. This cellular answer starts with rapid modifications of thylakoid-located processes, followed by modifications in the stroma and transport activities across the chloroplast envelope.
View Article and Find Full Text PDFNon-photochemical quenching (NPQ) protects plants from the detrimental effects of excess light. NPQ is rapidly induced by the trans-thylakoid proton gradient during photosynthesis, which in turn requires PGR5/PGRL1-dependent cyclic electron flow (CEF). Thus, plants lacking either protein cannot induce transient NPQ and die under fluctuating light conditions.
View Article and Find Full Text PDFIn plants, inactivation of either of the thylakoid proteins PGR5 and PGRL1 impairs cyclic electron flow (CEF) around photosystem I. Because PGR5 is unstable in the absence of the redox-active PGRL1, but not vice versa, PGRL1 is thought to be essential for CEF. However, we show here that inactivation of PGRL2, a distant homolog of PGRL1, relieves the need for PGRL1 itself.
View Article and Find Full Text PDFThis study explores the emotional impact of contextually-relevant source texts (STs) and their influence on student translators' behavior. During the first weeks of the Spanish COVID-19 lockdown, an experimental study was carried out in which 69 Spanish translation students were instructed to translate two English STs with different evaluative attitudes (i.e.
View Article and Find Full Text PDFAcclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
October 2020
In this work, we analyzed the advantages of using silver nanoparticles (AgNPs) synthesized with natural extracts in ultraviolet-visible spectroscopy (UV-Vis) protective cream. The photodegradation properties of the new UV-Vis protective milk show an increase in its absorption band compared to AgNP-free cream. Previous to the study of the AgNPs mixed within the body milk, we studied the optical UV-Vis properties of extracts at different collection times, as they can influence the spectral range of UV-Vis absorption of the hybrid compound (AgNPs + natural extract).
View Article and Find Full Text PDFWakefield based accelerators capable of accelerating gradients 2 orders of magnitude higher than present accelerators offer a path to compact high energy physics instruments and light sources. However, for high gradient accelerators, beam instabilities driven by commensurately high transverse wakefields limit beam quality. Previously, it has been theoretically shown that transverse wakefields can be reduced by elliptically shaping the transverse sizes of beams in dielectric structures with planar symmetry.
View Article and Find Full Text PDFPhys Rev Lett
September 2019
An intense, subpicosecond, relativistic electron beam traversing a dielectric-lined waveguide generates very large amplitude electric fields at terahertz (THz) frequencies through the wakefield mechanism. In recent work employing this technique to accelerate charged particles, the generation of high-power, narrow-band THz radiation was demonstrated. The radiated waves contain fields with measured amplitude exceeding 2 GV/m, orders of magnitude greater than those available by other THz generation techniques at a narrow bandwidth.
View Article and Find Full Text PDFNew technologies are changing the therapeutical options to do indirect restorations and new adhesive systems are continuously introduced to be used by clinicians. Different interactions between restorations, adhesive systems components, enamel and dentin require having criteria based on the selection of the adhesive system, ensuring the longevity of the restorations and the preservation of the biological remnant. The adhesion force to the dental tissue is one of the indicatives of the behavior of the adhesive systems and influences the behavior of the treatments with direct and indirect restorations.
View Article and Find Full Text PDFGUN1 integrates retrograde signals in chloroplasts but the underlying mechanism is elusive. FUG1, a chloroplast translation initiation factor, and GUN1 are co-expressed at the transcriptional level, and FUG1 co-immunoprecipitates with GUN1. We used mutants of GUN1 (gun1-103) and FUG1 (fug1-3) to analyse their functional relationship at the physiological and system-wide level, the latter including transcriptome and proteome analyses.
View Article and Find Full Text PDFMultiple abi4 alleles fail to show a deficiency in chloroplast-to-nucleus retrograde signalling indicating that, contrary to contemporary models, ABI4 is not a component of this signalling pathway
View Article and Find Full Text PDFPhotonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity.
View Article and Find Full Text PDFThiol-dependent redox regulation allows the rapid adaptation of chloroplast function to unpredictable changes in light intensity. Traditionally, it has been considered that chloroplast redox regulation relies on photosynthetically reduced ferredoxin (Fd), thioredoxins (Trxs), and an Fd-dependent Trx reductase (FTR), the Fd-FTR-Trxs system, which links redox regulation to light. More recently, a plastid-localized NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC, was identified.
View Article and Find Full Text PDFViral M-dsRNAs encoding yeast killer toxins share similar genomic organization, but no overall sequence identity. The dsRNA full-length sequences of several known M-viruses either have yet to be completed, or they were shorter than estimated by agarose gel electrophoresis. High-throughput sequencing was used to analyze some M-dsRNAs previously sequenced by traditional techniques, and new dsRNAs from atypical killer strains of and .
View Article and Find Full Text PDFThere is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration.
View Article and Find Full Text PDFIron limitation is the major factor controlling phytoplankton growth in vast regions of the contemporary oceans. In this study, a combination of thermoluminescence (TL), chlorophyll fluorescence, and P700 absorbance measurements have been used to elucidate the effects of iron deficiency in the photosynthetic electron transport of the marine diatom P. tricornutum.
View Article and Find Full Text PDFRedox regulation plays a central role in the adaptation of chloroplast metabolism to light. Extensive biochemical analyses in vitro have identified f-type thioredoxins (Trxs) as the most important catalysts for light-dependent reduction and activation of the enzymes of the Calvin-Benson cycle. However, the precise function of type f Trxs in vivo and their impact on plant growth are still poorly known.
View Article and Find Full Text PDFHigh irradiances may lead to photooxidative stress in plants, and non-photochemical quenching (NPQ) contributes to protection against excess excitation. One of the NPQ mechanisms, qE, involves thermal dissipation of the light energy captured. Importantly, plants need to tune down qE under light-limiting conditions for efficient utilization of the available quanta.
View Article and Find Full Text PDFTwo different thiol redox systems exist in plant chloroplasts, the ferredoxin-thioredoxin (Trx) system, which depends on ferredoxin reduced by the photosynthetic electron transport chain and, thus, on light, and the NADPH-dependent Trx reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested, therefore, that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of Trx f1 and NTRC in regulating photosynthetic metabolism and growth.
View Article and Find Full Text PDFWe report experimental measurements of narrow-band, single-mode excitation, and drive beam energy modulation, in a dielectric wakefield accelerating structure with planar geometry and Bragg-reflector boundaries. A short, relativistic electron beam (∼1 ps) with moderate charge (∼100 pC) is used to drive the wakefields in the structure. The fundamental mode of the structure is reinforced by constructive interference in the alternating dielectric layers at the boundary, and is characterized by the spectral analysis of the emitted coherent Cherenkov radiation signal.
View Article and Find Full Text PDFPhotosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled.
View Article and Find Full Text PDF