Publications by authors named "Nara Oh"

Misfolded polypeptides are rapidly cleared from cells via the ubiquitin-proteasome system (UPS). However, when the UPS is impaired, misfolded polypeptides form small cytoplasmic aggregates, which are sequestered into an aggresome and ultimately degraded by aggrephagy. Despite the relevance of the aggresome to neurodegenerative proteinopathies, the molecular mechanisms underlying aggresome formation remain unclear.

View Article and Find Full Text PDF

In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment.

View Article and Find Full Text PDF

Human transforming growth factor-beta receptor type 2 (TGFbetaR2) mRNA harboring a premature translation termination codon (PTC) generated by frameshift mutation is targeted for nonsense-mediated translational repression (NMTR), rather than nonsense-mediated mRNA decay (NMD). Here we show that exon junction complex (EJC) downstream of a PTC plays an inhibitory role in translation of TGFbetaR2 mRNA. Translational repression by core EJC components occurs after formation of 80S ribosome complex, which is demonstrated using different types of internal ribosome entry sites (IRESes).

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is one of the mRNA surveillance mechanisms, which eliminates aberrant mRNAs harboring premature termination codons. NMD targets only mRNAs bound by the nuclear cap-binding protein complex CBP80/20 which directs the pioneer round of translation. Here we demonstrate that NMD occurs efficiently during prolonged hypoxia in which steady-state translation is drastically inhibited.

View Article and Find Full Text PDF

The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E.

View Article and Find Full Text PDF