Publications by authors named "Nara L M Sobreira"

Ollier disease (OD) and Maffucci Syndrome (MS) are rare disorders characterized by multiple enchondromas, commonly causing bone deformities, limb length discrepancies, and pathological fractures. MS is distinguished from OD by the development of vascular anomalies. Both disorders are cancer predisposition syndromes with malignancies developing in ~50% of the individuals with OD or MS.

View Article and Find Full Text PDF
Article Synopsis
  • Orofacial clefts (OFCs) and clubfoot (CTEV) are congenital defects affecting facial and foot structure, with specific occurrence rates of 1 in 700 and 1 in 1000 live births, respectively.
  • * The study involved whole-exome sequencing of six individuals with both OFCs and CTEV to identify any common genetic causes.
  • * Four out of six probands exhibited probable pathogenic genetic variants, with each showing mutations in one to three different genes associated with various genetic syndromes.
View Article and Find Full Text PDF

The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing.

View Article and Find Full Text PDF

Variants in MBTPS1 (membrane-bound transcription factor peptidase, site 1) encoding the protein convertase site-1 protease (S1P) were recently reported in a single individual with skeletal dysplasia and elevated plasma lysosomal enzymes. Here, we report the second individual with this newly described autosomal recessive spondyloepiphyseal dysplasia (OMIM #618392), presenting severe growth retardation, cataract and dysmorphic features, mainly retromicrognathia. Epilepsy and craniosynostosis were novel findings in our proband.

View Article and Find Full Text PDF

Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data.

View Article and Find Full Text PDF

Greenberg skeletal dysplasia is an autosomal recessive, perinatal lethal disorder associated with biallelic variants affecting the lamin B receptor (LBR) gene. LBR is also associated with the autosomal recessive anadysplasia-like spondylometaphyseal dysplasia, and the autosomal dominant Pelger-Huët anomaly, a benign laminopathy characterized by anomalies in the nuclear shape of blood granulocytes. The LBR is an inner nuclear membrane protein that binds lamin B proteins (LMNB1 and LMNB2), interacts with chromatin, and exerts a sterol reductase activity.

View Article and Find Full Text PDF

Gillespie syndrome (GS) [MIM: 206700] is a very rare condition characterized by bilateral iris defect, congenital hypotonia, cerebellar ataxia and intellectual disability. The typical iris anomaly is considered necessary to the diagnosis of GS. Recently, variants in ITPR1 were described causing GS.

View Article and Find Full Text PDF

In well over half of the individuals with rare disease who undergo clinical or research next-generation sequencing, the responsible gene cannot be determined. Some reasons for this relatively low yield include unappreciated phenotypic heterogeneity; locus heterogeneity; somatic and germline mosaicism; variants of uncertain functional significance; technically inaccessible areas of the genome; incorrect mode of inheritance investigated; and inadequate communication between clinicians and basic scientists with knowledge of particular genes, proteins, or biological systems. To facilitate such communication and improve the search for patients or model organisms with similar phenotypes and variants in specific candidate genes, we have developed the Matchmaker Exchange (MME).

View Article and Find Full Text PDF

Horstick et al. (2013) previously reported a homozygous p.Trp284Ser variant in STAC3 as the cause of Native American myopathy (NAM) in 5 Lumbee Native American families with congenital hypotonia and weakness, cleft palate, short stature, ptosis, kyphoscoliosis, talipes deformities, and susceptibility to malignant hyperthermia (MH).

View Article and Find Full Text PDF

The chromosomal segment 6q24-q25 comprises a contiguous gene microdeletion syndrome characterized by intrauterine growth retardation, growth delay, intellectual disability, cardiac anomalies, and a dysmorphic facial phenotype. We describe here a 10-year follow-up with detailed clinical, neuropsychological, and cytomolecular data of two siblings, male and female, who presented with developmental delay, microcephaly, short stature, characteristic facial dysmorphisms, multiple organ anomalies, and intellectual disability. Microarray analysis showed an 8.

View Article and Find Full Text PDF

Van den Ende-Gupta Syndrome (VDEGS) is an autosomal recessive disorder characterized by blepharophimosis, distinctive nose, hypoplastic maxilla, and skeletal abnormalities. Using homozygosity mapping in four VDEGS patients from three consanguineous families, Anastacio et al. [Anastacio et al.

View Article and Find Full Text PDF

Translocations are a common class of chromosomal aberrations and can cause disease by physically disrupting genes or altering their regulatory environment. Some translocations, apparently balanced at the microscopic level, include deletions, duplications, insertions, or inversions at the molecular level. Traditionally, chromosomal rearrangements have been investigated with a conventional banded karyotype followed by arduous positional cloning projects.

View Article and Find Full Text PDF

We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set.

View Article and Find Full Text PDF

Although more than 2,400 genes have been shown to contain variants that cause Mendelian disease, there are still several thousand such diseases yet to be molecularly defined. The ability of new whole-genome sequencing technologies to rapidly indentify most of the genetic variants in any given genome opens an exciting opportunity to identify these disease genes. Here we sequenced the whole genome of a single patient with the dominant Mendelian disease, metachondromatosis (OMIM 156250), and used partial linkage data from her small family to focus our search for the responsible variant.

View Article and Find Full Text PDF

Nonsyndromic syndactyly is a common, heterogeneous hereditary condition of webbed fingers and toes that can be cutaneous or bony, unilateral or bilateral. We describe a patient with complex toe syndactyly and oligodactyly, some interesting skeletal hand findings and atypical facial features without other case like this described before. Cenani-Lenz syndrome (CLS) is a rare disorder with total syndactyly and irregular synostosis of carpal, metacarpal and phalanges, it may involve ulna and radius and digital rays may be absent, some of these were described with atypical facial features and one patient had renal hypoplasia and vertebral anomalies but our patient does not have the oligodactyly or syndactyly of the hands that is consistently present in all patients with CLS.

View Article and Find Full Text PDF