Tissue damage and repair are hallmarks of inflammation. Despite a wealth of information on the mechanisms that govern tissue damage, mechanistic insight into how inflammation affects repair is lacking. Here, we investigated how interferons influence tissue repair after damage to the intestinal mucosa.
View Article and Find Full Text PDFVitB5 level becomes limiting in sarcomas. It is regulated by the pantetheinase activity of VNN1. VNN1 expression in sarcomas is associated with better prognosis and immune infiltration.
View Article and Find Full Text PDFThe tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice.
View Article and Find Full Text PDFCoenzyme A (CoA) serves as a vital cofactor in numerous enzymatic reactions involved in energy production, lipid metabolism, and synthesis of essential molecules. Dysregulation of CoA-dependent metabolic pathways can contribute to chronic diseases, such as inflammatory diseases, obesity, diabetes, cancer, and cardiovascular disorders. Additionally, CoA influences immune cell activation by modulating the metabolism of these cells, thereby affecting their proliferation, differentiation, and effector functions.
View Article and Find Full Text PDFAggressive tumors often display mitochondrial dysfunction. Upon oxidative stress, mitochondria undergo fission through OMA1-mediated cleavage of the fusion effector OPA1. In yeast, a redox-sensing switch participates in OMA1 activation.
View Article and Find Full Text PDFObjective: In the management of patients with IBD, there is a need to identify prognostic markers and druggable biological pathways to improve mucosal repair and probe the efficacy of tumour necrosis factor alpha biologics. Vnn1 is a pantetheinase that degrades pantetheine to pantothenate (vitamin B, a precursor of coenzyme A (CoA) biosynthesis) and cysteamine. Vnn1 is overexpressed by inflamed colonocytes.
View Article and Find Full Text PDFMetabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology.
View Article and Find Full Text PDFCoenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments.
View Article and Find Full Text PDFLike other tumors, aggressive soft tissue sarcomas (STS) use glycolysis rather than mitochondrial oxidative phosphorylation (OXPHOS) for growth. Given the importance of the cofactor coenzyme A (CoA) in energy metabolism, we investigated the impact of Vnn1 pantetheinase-an enzyme that degrades pantetheine into pantothenate (vitamin B5, the CoA biosynthetic precursor) and cysyteamine-on tumor growth. Using two models, we show that Vnn1 STS remain differentiated and grow slowly, and that in patients a detectable level of VNN1 expression in STS is associated with an improved prognosis.
View Article and Find Full Text PDFSystemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and visceral organs and vascular alterations. SSc pathophysiology involves systemic inflammation and oxidative stress. Because the vanin-1 gene (vnn1) encodes an enzyme with pantetheinase activity that converts vasculoprotective pantethine into profibrotic pantothenic acid and pro-oxidant cystamine, we tested this pathway in the pathophysiology of SSc.
View Article and Find Full Text PDFEmbryonic implantation comprises a dynamic and complicated series of events, which takes place only when the maternal uterine endometrium is in a receptive state. Blastocysts reaching the uterus communicate with the uterine endometrium to implant within a narrow time window. Interplay among various signalling molecules and transcription factors under the control of ovarian hormones is necessary for successful establishment of pregnancy.
View Article and Find Full Text PDFBackground And Aims: Pretreatment with clofibrate, a peroxisome proliferator-activated receptor alpha (PPARa) agonist, protects mice from acetaminophen (APAP) injury. Protection is not due to alterations in APAP metabolism and is dependent on PPARa expression. Gene array analysis revealed that mice receiving clofibrate have enhanced hepatic Vanin-1 (Vnn1) gene expression, a response that is also PPARa dependent.
View Article and Find Full Text PDFRecent developments have demonstrated that metabolic rewiring imposed by adaptation of tissues to stress leads to the release of various metabolites which directly or indirectly impact innate immune responses and inflammation. Some metabolites can behave as second messengers and leave local cues in tissues. Immune cells which infiltrate stressed tissues reorient their metabolism to cope with these microenvironmental cues while preserving their effector functions in tissues.
View Article and Find Full Text PDFIn liver, cysteamine in all probability represents a "low-capacity, high-affinity" scavenger of ROS. The available body of evidence suggests that reduced cysteamine and oxidized cystamine exist in equilibrium and that this ratio acts as an active redox sensor within the cell much like GSH. During normal liver homeostasis cysteamine's antioxidant properties are evident.
View Article and Find Full Text PDFTissue pantetheinase, encoded by the VNN1 gene, regulates response to stress, and previous studies have shown that VNN genes contribute to the susceptibility to malaria. Herein, we evaluated the role of pantetheinase on erythrocyte homeostasis and on the development of malaria in patients and in a new mouse model of pantetheinase insufficiency. Patients with cerebral malaria have significantly reduced levels of serum pantetheinase activity (PA).
View Article and Find Full Text PDFTumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8 T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence.
View Article and Find Full Text PDFObjective: Endothelial cell (EC) damage in systemic sclerosis (SSc) is reflected by the shedding of microparticles (MPs). The aim of this study was to show that inhibiting MP release using pantethine or by inactivating ATP-binding cassette transporter A1 (ABCA1) ameliorates murine SSc.
Methods: First, the effects of pantethine on MP shedding and on basal oxidative and nitrosative stresses in ECs and fibroblasts were determined in vitro.
Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation.
View Article and Find Full Text PDFPantetheinase is an ubiquitous enzyme which hydrolyses D-pantetheine into cysteamine and pantothenate (vitamin B5) on the dissimilative pathway of CoA. Pantetheinase isoforms are encoded by the Vnn (vanin) genes and Vnn1 is the predominant tissue isoform in mice and humans. In the present article, we review the results showing the regulation of Vnn1 expression during developmental, repair and inflammatory situations and the impact of a Vnn1 deficiency in mouse models of pathologies.
View Article and Find Full Text PDFBackground & Aims: Peroxisome proliferator-activated receptor alpha (PPARα) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARα target gene in liver, but its function in hepatic lipid metabolism is unknown.
Methods: We investigated the regulation of vanin-1, and total vanin activity, by PPARα in mice and humans.
SF-1 (NR5A1) overexpression can induce adrenocortical tumor formation in transgenic mice and is associated with more severe prognosis in patients with adrenocortical cancer. In this study we have identified Vanin-1 (Vnn1), a SF-1 target gene, as a novel modulator of the tumorigenic effect of Sf-1 overexpression in the adrenal cortex. Vanin-1 is endowed with pantetheinase activity, releasing cysteamine in tissues and regulating cell response to oxidative stress by modulating the production of glutathione.
View Article and Find Full Text PDFThe membrane-bound Vanin-1 pantetheinase regulates tissue adaptation to stress. We investigated Vnn1 expression and its regulation in liver. Vnn1 is expressed by centrolobular hepatocytes.
View Article and Find Full Text PDFBackground: Vanin-1 is an epithelial pantetheinase, which regulates intestinal inflammation in mouse. We investigated whether human VNN1 levels could be associated to the susceptibility to inflammatory bowel diseases (IBD) and explored the participation of PPARg to these processes.
Methods: We studied VNN1 expression in colon biopsies from IBD patients.
Invading bacteria are recognized, captured and killed by a specialized form of autophagy, called xenophagy. Recently, defects in xenophagy in Crohn's disease (CD) have been implicated in the pathogenesis of human chronic inflammatory diseases of uncertain etiology of the gastrointestinal tract. We show here that pathogenic adherent-invasive Escherichia coli (AIEC) isolated from CD patients are able to adhere and invade neutrophils, which represent the first line of defense against bacteria.
View Article and Find Full Text PDFIt has been hypothesized that a disturbance of central self-tolerance to islet β cells may play a role in the enteroviral pathogenesis of type 1 diabetes. Whether enteroviruses can induce an impaired expression of β-cell self-antigens in thymic epithelial cells has been investigated in a murine thymic epithelial (MTE) cell line. This cell line was permissive to the diabetogenic group B4 coxsackievirus (CV-B4) strain CV-B4 E2 and spontaneously expressed type 2 insulin-like growth factor (Igf2), the dominant self-antigen of the insulin family.
View Article and Find Full Text PDF