Septins are filamentous nucleotide-binding proteins which can associate with membranes in a curvature-dependent manner leading to structural remodelling and barrier formation. Ciona intestinalis, a model for exploring the development and evolution of the chordate lineage, has only four septin-coding genes within its genome. These represent orthologues of the four classical mammalian subgroups, making it a minimalist non-redundant model for studying the modular assembly of septins into linear oligomers and thereby filamentous polymers.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
February 2024
Biotechnological applications of phytocystatins have garnered significant interest due to their potential applications in crop protection and improve crop resistance to abiotic stress factors. Cof1 and Wal1 are phytocystatins derived from Coffea arabica and Juglans regia, respectively. These plants hold significant economic value due to coffee's global demand and the walnut tree's production of valuable timber and widely consumed walnuts with culinary and nutritional benefits.
View Article and Find Full Text PDFBCG is the only vaccine against tuberculosis. The variable forms of cultivation throughout the years, before seed-lots were developed, allowed in vitro evolution of the original strain, generating a family of vaccines with different phenotypic and genotypic characteristics. Molecular studies revealed regions of difference (RDs) in the genomes of the various BCG strains.
View Article and Find Full Text PDFHumicola grisea var. thermoidea is an aerobic and thermophilic fungus that secretes the GH11 xylanase HXYN2 in the presence of sugarcane bagasse. In this study, HXYN2 was expressed in Pichia pastoris and characterized biochemically and structurally in the presence of beechwood xylan substrate and ferulic acid (FA).
View Article and Find Full Text PDFIn order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition.
View Article and Find Full Text PDFAutoimmunity may have its origins of early repertoire selection in developmental B cells. Such a primary repertoire is probably shaped by selecting B cells that can efficiently perform productive signaling, stimulated by self-antigens in the bone marrow, such as DNA. In support of that idea, we previously found a V segment from V10 family that can form antibodies that bind to DNA independent of CDR3 usage.
View Article and Find Full Text PDFSeptins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins.
View Article and Find Full Text PDFPhytocystatins are a family of plant cysteine-protease inhibitors of great interest due to their biotechnological application in culture improvement. It was shown that their expression in plants increases resistance to herbivory by insects and improves tolerance to both biotic and abiotic stress factors. In this work, owing to the economical relevance of the source organism, a phytocystatin from hop (Humulus lupulus), Hop1, was produced by heterologous expression in E.
View Article and Find Full Text PDFIUCrJ
May 2020
Human septins 3, 9 and 12 are the only members of a specific subgroup of septins that display several unusual features, including the absence of a C-terminal coiled coil. This particular subgroup (the SEPT3 septins) are present in rod-like octameric protofilaments but are lacking in similar hexameric assemblies, which only contain representatives of the three remaining subgroups. Both hexamers and octamers can self-assemble into mixed filaments by end-to-end association, implying that the SEPT3 septins may facilitate polymerization but not necessarily function.
View Article and Find Full Text PDFNatural inhibitors of proteases have been classified into different families, among them is the Bowman-Birk Inhibitor (BBI) family. Members of BBI have two structurally reactive loops that simultaneously inhibit trypsin and chymotrypsin. Here, we have investigated the binding of bovine trypsin by a cyclic nonapeptide, named PTRY9 (CTKSIPPQC), derived of the black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) from Vigna unguiculata seeds.
View Article and Find Full Text PDFSeptins are able to polymerize into long apolar filaments and have long been considered to be a component of the cytoskeleton alongside intermediate filaments (which are also apolar in nature), microtubules and actin filaments (which are not). Their central guanosine triphosphate (GTP)-binding domain, which is essential for stabilizing the filament itself, is flanked by N- and C-terminal domains for which no direct structural information is yet available. In most cases, physiological filaments are built from a number of different septin monomers, and in the case of mammalian septins this is most commonly either three or four.
View Article and Find Full Text PDFInt J Biol Macromol
September 2017
Two cysteine proteinase inhibitors from cowpea, VuCys1 and VuCys2, were produced in E. coli ArcticExpress (DE3). The recombinant products strongly inhibited papain and chymopapain as well as the midgut proteases from Callosobruchus maculatus larvae, a bruchid that uses cysteine proteases as major digestive enzymes.
View Article and Find Full Text PDFOrganic hydroperoxide resistance (Ohr) enzymes are unique Cys-based, lipoyl-dependent peroxidases. Here, we investigated the involvement of Ohr in bacterial responses toward distinct hydroperoxides. In silico results indicated that fatty acid (but not cholesterol) hydroperoxides docked well into the active site of Ohr from Xylella fastidiosa and were efficiently reduced by the recombinant enzyme as assessed by a lipoamide-lipoamide dehydrogenase-coupled assay.
View Article and Find Full Text PDFProtein-protein interactions play a critical role in promoting the stability of protein quaternary structure and in the assembly of large macromolecular complexes. What drives the stabilization of such assemblies is a central question in biology. A limiting factor in fully understanding such systems is the transient nature of many complexes, making structural studies difficult.
View Article and Find Full Text PDFPersisters are individual bacterial cells that exhibit a phenotype characterized by slow growth, low metabolic rate and multidrug tolerance. The processes that drive cells into a persistence state constitute an active but incipient research field, and structural data regarding its components are scarce. The molecular targets of many therapeutic drugs are involved in cell wall synthesis and cell division, and these cellular processes are down-regulated in persister cells, consequently these cells are more likely to survive antibiotic treatment.
View Article and Find Full Text PDFThe three-dimensional structure of canecystatin-1, a potent inhibitor of cysteine proteases from sugarcane (Saccharum officinarum), has been solved in two different crystal forms. In both cases, it is seen to exist as a domain-swapped dimer, the first such observation for a cystatin of plant origin. Size exclusion chromatography and multidimensional NMR spectroscopy show the dimer to be the dominant species in solution, despite the presence of a measurable quantity of monomer undergoing slow exchange.
View Article and Find Full Text PDFThe human genome codes for 13 members of a family of filament-forming GTP-binding proteins known as septins. These have been divided into four different subgroups on the basis of sequence similarity. The differences between the subgroups are believed to control their correct assembly into heterofilaments which have specific roles in membrane remodelling events.
View Article and Find Full Text PDFSeptins form a conserved family of filament forming GTP binding proteins found in a wide range of eukaryotic cells. They share a common structural architecture consisting of an N-terminal domain, a central GTP binding domain and a C-terminal domain, which is often predicted to adopt a coiled-coil conformation, at least in part. The crystal structure of the human SEPT2/SEPT6/SEPT7 heterocomplex has revealed the importance of the GTP binding domain in filament formation, but surprisingly no electron density was observed for the C-terminal domains and their function remains obscure.
View Article and Find Full Text PDFBackground: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis.
Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B.
Alzheimer's disease is an ultimately fatal neurodegenerative disease, and BACE-1 has become an attractive validated target for its therapy, with more than a hundred crystal structures deposited in the PDB. In the present study, we present a new methodology that integrates ligand-based methods with structural information derived from the receptor. 128 BACE-1 inhibitors recently disclosed by GlaxoSmithKline R&D were selected specifically because the crystal structures of 9 of these compounds complexed to BACE-1, as well as five closely related analogs, have been made available.
View Article and Find Full Text PDFMost physiological effects of thyroid hormones are mediated by the two thyroid hormone receptor subtypes, TRalpha and TRbeta. Several pharmacological effects mediated by TRbeta might be beneficial in important medical conditions such as obesity, hypercholesterolemia and diabetes, and selective TRbeta activation may elicit these effects while maintaining an acceptable safety profile. To understand the molecular determinants of affinity and subtype selectivity of TR ligands, we have successfully employed a ligand- and structure-guided pharmacophore-based approach to obtain the molecular alignment of a large series of thyromimetics.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
December 2008
Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TRalpha and TRbeta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TRbeta ligands has been stimulated by the finding that several pharmacological actions mediated by TRbeta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TRbeta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1.
View Article and Find Full Text PDF2D QSAR studies were carried out for a series of 55 ligands for the Thyroid receptors, TRalpha and TRbeta. Significant cross-validated correlation coefficients (q(2)=0.781 (TRalpha) and 0.
View Article and Find Full Text PDF