Publications by authors named "Napissara Boonpraman"

Importance: Endochondral ossification plays an important role in skeletal development. Recent studies have suggested a link between increased intracellular reactive oxygen species (ROS) and skeletal disorders. Moreover, previous studies have revealed that increasing the levels of myeloperoxidase (MPO) and osteopontin (OPN) while inhibiting NADPH oxidase 4 (NOX4) can enhance bone growth.

View Article and Find Full Text PDF

Diseases like Alzheimer's and Parkinson's diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions.

View Article and Find Full Text PDF

Oxidative stress and mitochondrial dysfunction have been believed to play an important role in the pathogenesis of aging and neurodegenerative diseases, including Parkinson's disease (PD). The excess of reactive oxygen species (ROS) increases with age and causes a redox imbalance, which contributes to the neurotoxicity of PD. Accumulating evidence suggests that NADPH oxidase (NOX)-derived ROS, especially NOX4, belong to the NOX family and is one of the major isoforms expressed in the central nervous system (CNS), associated with the progression of PD.

View Article and Find Full Text PDF

Phenotypic features such as ataxia and loss of motor function, which are characteristics of Parkinson's disease (PD), are expected to be very closely related to cerebellum function. However, few studies have reported the function of the cerebellum. Since the cerebellum, like the cerebrum, is known to undergo functional and morphological changes due to neuroinflammatory processes, elucidating key functional factors that regulate neuroinflammation in the cerebellum can be a beneficial therapeutic approach.

View Article and Find Full Text PDF

Since the onset of the COVID-19 pandemic, there has been a growing demand for effective and safe disinfectants. A novel use of chlorine dioxide (ClO) gas, which can satisfy such demand, has been reported. However, its efficacy and safety remain unclear.

View Article and Find Full Text PDF

Oxidative stress has been implicated in the pathogenesis of Alzheimer's disease (AD). Mitochondrial dysfunction is linked to oxidative stress and reactive oxygen species (ROS) in neurotoxicity during AD. Impaired mitochondrial metabolism has been associated with mitochondrial dysfunction in brain damage of AD.

View Article and Find Full Text PDF

Altered glucose metabolism has been implicated in the pathogenesis of Alzheimer's disease (AD). Aerobic glycolysis from astrocytes is a critical metabolic pathway for brain energy metabolism. Disturbances of circadian rhythm have been associated with AD.

View Article and Find Full Text PDF