Publications by authors named "Naoyuki Tahara"

Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury.

View Article and Find Full Text PDF

Background: The regeneration of larvae zebrafish fin emerged as a new model of regeneration in the last decade. In contrast to genetic tools to study fin regeneration, chemical probes to modulate and interrogate regeneration processes are not well developed.

Results: We set up a zebrafish larvae fin regeneration assay system and tested activities of natural product compounds and extracts, prepared from various microbes.

View Article and Find Full Text PDF

Pituitary collision tumors are sporadically reported and rare. We present a case of pituitary collision tumors with nonfunctioning pituitary adenoma (NFPA) and craniopharyngioma. In order to look for any common activated pathway, we examined WNT/β-CATENIN signaling activation, known to be involved in tumorigenesis in both craniopharyngioma and NFPA.

View Article and Find Full Text PDF

The vertebrate limb serves as an experimental paradigm to study mechanisms that regulate development of the stereotypical skeletal elements. In this study, we simultaneously inactivated using and in mouse embryos, and found that their combined function regulates development of the proximal-anterior skeletal elements in hindlimbs. The ; double knockout exhibits severe defects in the femur, tibia, and anterior digits, distinct defects compared to other allelic series of ; We found that regulates expression prior to hindlimb outgrowth.

View Article and Find Full Text PDF

Bi-potential neuromesodermal progenitors (NMPs) produce both neural and paraxial mesodermal progenitors in the trunk and tail during vertebrate body elongation. We show that , a pluripotency-related transcription factor gene, has multiple roles in regulating NMPs and their descendants in post-gastrulation mouse embryos. deletion using caused body/tail truncation, reminiscent of early depletion of NMPs, suggesting a role of in NMP maintenance.

View Article and Find Full Text PDF

Mutations in the SALL4 gene cause human syndromes with defects in multiple organs. Sall4 expression declines rapidly in post-gastrulation mouse embryos, and our understanding of the requirement of Sall4 in animal development is still limited. To assess the contributions of Sall4 expressing cells to developing mouse embryos, we monitored temporal changes of the contribution of Sall4 lineages using a Sall4 GFP-CreER knock-in mouse line and recombination-dependent reporter lines.

View Article and Find Full Text PDF

Remodeling of the primitive vasculature is necessary for the formation of a complex branched vascular architecture. However, the factors that modulate these processes are incompletely defined. Previously, we defined the role of microRNAs (miRNAs) in endothelial specification.

View Article and Find Full Text PDF

Isl1 is required for two processes during hindlimb development: initiation of the processes directing hindlimb development in the lateral plate mesoderm and configuring posterior hindlimb field in the nascent hindlimb buds. During these processes, Isl1 expression is restricted to the posterior mesenchyme of hindlimb buds. How this dynamic change in Isl1 expression is regulated remains unknown.

View Article and Find Full Text PDF

Increasing evidence supports the idea that bone morphogenetic proteins (BMPs) regulate cartilage maintenance in the adult skeleton. The aim of this study is to obtain insight into the regulation of BMP activities in the adult skeletal system. We analyzed expression of Noggin and Gremlin1, BMP antagonists that are known to regulate embryonic skeletal development, in the adult skeletal system by Noggin-LacZ and Gremlin1-LacZ knockin reporter mouse lines.

View Article and Find Full Text PDF

Mechanisms of haematopoietic and cardiac patterning remain poorly understood. Here we show that the BMP and Wnt signalling pathways are integrated in an endoglin (Eng)-dependent manner in cardiac and haematopoietic lineage specification. Eng is expressed in early mesoderm and marks both haematopoietic and cardiac progenitors.

View Article and Find Full Text PDF

Gli3 is a major regulator of Hedgehog signaling during limb development. In the anterior mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. Although numerous studies have identified mechanisms that regulate Gli3 function in vitro, it is not completely understood how Gli3 function is regulated in vivo.

View Article and Find Full Text PDF

Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself.

View Article and Find Full Text PDF

We recently reported that an RNA binding protein called Cugbp Elav-like family member 1 (Celf1) regulates somite symmetry and left-right patterning in zebrafish. In this report, we show additional roles of Celf1 in zebrafish organogenesis. When celf1 is knocked down by using an antisense morpholino oligonucleotides (MO), liver buds fail to form, and pancreas buds do not form a cluster, suggesting earlier defects in endoderm organogenesis.

View Article and Find Full Text PDF