Direct understanding of the formation and crystallization of low-dimensional (LD) perovskites with varying dimensionalities employing the same bulky cations can offer insights into LD perovskites and their heterostructures with 3D perovskites. In this study, the secondary amine cation of N-methyl-1-(naphthalen-1-yl)methylammonium (M-NMA) and the formation dynamics of its corresponding LD perovskite are investigated. The intermolecular π-π stacking of M-NMA and their connection with inorganic PbI octahedrons within the product structures control the formation of LD perovskite.
View Article and Find Full Text PDFExploiting the self-assembled molecules (SAMs) as hole-selective contacts has been an effective strategy to improve the efficiency and long-term stability of perovskite solar cells (PSCs). Currently, research works are focusing on constructing SAMs on metal oxide surfaces in p-i-n PSCs, but realizing a stable and dense SAM contact on halide perovskite surfaces in n-i-p PSCs is still challenging. In this work, the hole-selective molecule for n-i-p device is developed featuring a terephthalic methylammonium core structure that possesses double-site anchoring ability and a matching diameter (6.
View Article and Find Full Text PDFCompositional engineering of organic-inorganic metal halide perovskite allows for improved optoelectrical properties, however, phase segregation occurs during crystal nucleation and limits perovskite solar cell device performance. Herein, we show that by applying tetrabutylammonium bistriflimide as an additive in the perovskite precursor solution, ultra-uniform perovskite crystals are obtained, which effectively increases device performance. As a result, power conversion efficiencies (PCEs) of 24.
View Article and Find Full Text PDFChemical bath deposition (CBD) is an effective technique used to produce high-quality SnO electron transport layers (ETLs) employed in perovskite solar cells (PSCs). By optimizing the CBD process, high-quality SnO films are obtained with minimal oxygen vacancies and close energy level alignment with the perovskite layer. In addition, the 3D perovskite layers are passivated with n-butylammonium iodide (BAI), iso-pentylammonium iodide (PNAI), or 2-methoxyethylammonium iodide (MOAI) to form 3D/2D heterojunctions, resulting in defect passivation, suppressing ion migration and improving charge carrier extraction.
View Article and Find Full Text PDFPerovskite solar cells are actively investigated for their potential as highly efficient and cost-effective photovoltaic devices. However, a significant challenge in their practical application is enhancing their durability. Particularly, these cells are expected to be subjected to heating by sunlight in real-world operating environments.
View Article and Find Full Text PDFThe power conversion efficiency of perovskite solar cells continues to increase. However, defects in perovskite materials are detrimental to their carrier dynamics and structural stability, ultimately limiting the photovoltaic characteristics and stability of perovskite solar cells. Herein, we report that 6H polytype perovskite effectively engineers defects at the interface with cubic polytype FAPbI, which facilitates radiative recombination and improves the stability of the polycrystalline film.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl).
View Article and Find Full Text PDFAll-inorganic CsPbI perovskite solar cells (PSCs) with efficiencies exceeding 20% are ideal candidates for application in large-scale tandem solar cells. However, there are still two major obstacles hindering their scale-up: (i) the inhomogeneous solid-state synthesis process and (ii) the inferior stability of the photoactive CsPbI black phase. Here, we have used a thermally stable ionic liquid, (triphenylphosphine)iminium (trifluoromethylsulfonyl)imide ([PPN][TFSI]), to retard the high-temperature solid-state reaction between CsPbI and DMAPbI [dimethylammonium (DMA)], which enables the preparation of high-quality and large-area CsPbI films in the air.
View Article and Find Full Text PDFAlbeit considerable attention to the fast-developing organic thermoelectric (OTE) materials due to their flexibility and non-toxic features, it is still challenging to design an OTE polymer with superior thermoelectric properties. In this work, two "isomorphic" donor-acceptor (D-A) conjugated polymers are studied as the semiconductor in OTE devices, revealing for the first time the internal mechanism of regioregularity on thermoelectric performances in D-A type polymers. A higher molecular structure regularity can lead to higher crystalline order and mobility, higher doping efficiency, order of energy state, and thermoelectric (TE) performance.
View Article and Find Full Text PDFEco-friendly solar cells were fabricated using interdigitated layers comprising ZnO nanowires (NWs) and infrared absorbing AgBiS nanocrystals (ITO/ZnO NWs/AgBiS/P3HT/Au). The quality of ZnO NWs was studied using photoluminescence and Raman spectroscopy to identify the defects in ZnO NWs influencing solar cell performance. Oxygen vacancies and Zn interstitial sites, among various recombination sites, were observed to be the main sites for carrier recombination, which hinders the carrier collection in the solar cells.
View Article and Find Full Text PDFThe emerging CsPbI perovskites are highly efficient and thermally stable materials for wide-band gap perovskite solar cells (PSCs), but the doped hole transport materials (HTMs) accelerate the undesirable phase transition of CsPbI in ambient. Herein, a dopant-free D-π-A type HTM named CI-TTIN-2F has been developed which overcomes this problem. The suitable optoelectronic properties and energy-level alignment endow CI-TTIN-2F with excellent charge collection properties.
View Article and Find Full Text PDFWe observed the crystallization dynamics of halide perovskite crystals (CH3NH3PbI3) by in situ heating wide-angle X-ray scattering measurements. As a result, we revealed that crystal growth occurs during the conversion of complexes to perovskite crystals.
View Article and Find Full Text PDFAgBiS nanocrystals (NCs) are nontoxic, lead-free, and near-infrared absorbing materials. Eco-friendly solar cells were constructed using interdigitated layers of ZnO nanowires (NWs) and AgBiS NCs, with the aim of elongating the otherwise short carrier diffusion length of the AgBiS NC assembly. AgBiS NCs were uniformly infiltrated into the ZnO NW layers using a low-cost and easily scalable dip coating method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2020
2,2',7,7'-Tetrakis(,-di--methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) is utilized as a p-type semiconductor layer in perovskite solar cells and solid-state dye-sensitized solar cells. Spiro-OMeTAD has been known to have a spiro center, leading to a random orientation. Although the molecular orientation of organic semiconductor materials influences the conductivity, which is directly related to semiconductor device characteristics, the molecular orientation of spiro-OMeTAD has not been fully discussed.
View Article and Find Full Text PDFA set of novel hole-transporting materials (HTMs) based on π-extension through carbazole units was designed and synthesized via a facile synthetic procedure. The impact of isomeric structural linking on their optical, thermal, electrophysical, and photovoltaic properties was thoroughly investigated by combining the experimental and simulation methods. Ionization energies of HTMs were measured and found to be suitable for a triple-cation perovskite active layer ensuring efficient hole injection.
View Article and Find Full Text PDFMetal halide perovskites are promising materials for light absorbers in solar cell applications. Use of the Br/I system enables us to control band gap energy and improves the efficiency of solar cells. Precise knowledge of lattice parameters and band gap energies as functions of compositions are crucially important for developing the devices using those materials.
View Article and Find Full Text PDFAn Nb-doped TiO (Nb-TiO) film comprising a double structure stacked with a bottom compact layer and top mesoporous layers was synthesized by treating a Ti precursor-coated substrate using a one-step low-temperature steam-annealing (SA) method. The SA-based Nb-TiO films possess high crystallinity and conductivity, and that allows better control over the conduction band (CB) of TiO for the electron transport layer (ETL) of the perovskite solar cells by the Nb doping level. Optimization of power conversion efficiency (PCE) for the Nb-TiO-based ETL was combined with the CB level tuning of the mixed-halide perovskite by changing the Br/I ratio.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Perovskite and textured silicon solar cells were integrated into a tandem solar cell through a stacking method. To consider the effective structure of silicon solar cells for perovskite/silicon tandem solar cells, the optic and photovoltaic properties of textured and flat silicon surfaces were compared using mechanical-stacking-tandem of two- and four-terminal structures by perovskite layers on crystal silicon wafers. The reflectance of the texture silicon surface in the range of 750-1050 nm could be reduced more than that of the flat silicon surface (from 2.
View Article and Find Full Text PDFResearch of CHNHPbI perovskite solar cells had significant attention as the candidate of new future energy. Due to the toxicity, however, lead (Pb) free photon harvesting layer should be discovered to replace the present CHNHPbI perovskite. In place of lead, we have tried antimony (Sb) and bismuth (Bi) with organic and metal monovalent cations (CHNH, Ag and Cu).
View Article and Find Full Text PDFWe confirmed the influence of ZnO nanoparticle size and residual water on performance of all inorganic perovskite solar cells. By decreasing the size of the ZnO nanoparticles, the short-circuit current density () and open circuit photovoltage () values are increased and the conversion efficiency is improved. Although the value is not affected by the influence of residual water in the solution for preparing the ZnO layer, the value drops greatly.
View Article and Find Full Text PDFDithienogermole (DTG) is a germanium-bridged bithiophene system that has been applied as a building unit of conjugated materials for organic electronic devices, including organic photovoltaics and organic light emitting diodes. However, DTG has not been used as a component of sensitizers for dye-sensitized solar cells (DSSCs). In this work, we have synthesized three D-π-A-π-A type sensitizers containing DTG and thiadiazolo[3,4-c]pyridine (PTz).
View Article and Find Full Text PDFThree novel metal-free organic dyes (DN458, DN475 and DN484) were designed for use in plastic-substrate dye-sensitized solar cells (PDSCs). The photoelectric conversion region of DN475 was successfully expanded into the near-infrared region. As a result, an energy conversion efficiency of 5.
View Article and Find Full Text PDFCo-sensitized dye-sensitized solar cells using black dye and a pyridine-anchor dye (NI5 or YNI-2) showing site-selective adsorption behaviour at the TiO2 surface have been prepared for the first time to reduce the competitive adsorption between the two dyes.
View Article and Find Full Text PDF