Publications by authors named "Naoyuki Maejima"

Cr-Loaded iron oxide with a dendritic crystalline structure was synthesized and the reversible crystalline phase transition during redox cycling of the iron oxide was investigated. X-ray diffraction and transmission electron microscopy analyses revealed that Cr was well dispersed and loaded in the iron oxide dendrite crystals, whose lattice constant was dependent on the Cr loading. Temperature-programmed oxidation and reduction experiments revealed the reversible redox properties of the Cr-loaded iron oxide dendrites, whose redox temperature was found to be lower than that of Cr-free iron oxide dendrites.

View Article and Find Full Text PDF
Article Synopsis
  • - Thin films display unique properties, but their mechanisms are complex due to limited structural data, especially in textured films like Mg-rich MgTi, which is a potential smart coating material.
  • - Traditional crystallographic techniques view these films as solid solution alloys, yet their behavior during hydrogenation suggests a need for a different model, as demonstrated by the identification of TiH clusters within the Mg matrix.
  • - The study reveals a new intermediate tetragonal phase during hydrogenation, which minimizes lattice mismatch and enhances hydrogen absorption, providing insights into the hydrogen-induced characteristics of Mg-rich MgTi thin films.
View Article and Find Full Text PDF

Magnesium-based transition-metal hydrides are attractive hydrogen energy materials because of their relatively high gravimetric and volumetric hydrogen storage capacities combined with low material costs. However, most of them are too stable to release the hydrogen under moderate conditions. Here we synthesize the hydride of MgFeSi, which consists of MgFeH and MgSi with the same cubic structure.

View Article and Find Full Text PDF

Three-dimensional imaging using X-ray as a probe is state-of-the-art for the characterization of heterogeneous materials. In addition to simple imaging of sample morphology, imaging of elemental distribution and chemical states provides advanced maps of key structural parameters of functional materials. The combination of X-ray absorption fine structure (XAFS) spectroscopy and three-dimensional imaging such as computed tomography (CT) can visualize the three-dimensional distribution of target elements, their valence states, and local structures in a non-destructive manner.

View Article and Find Full Text PDF

The crystal structure of the excitonic insulator TaNiSe has been investigated under a range of pressures, as determined by the complementary analysis of both single-crystal and powder synchrotron X-ray diffraction measurements. The monoclinic ambient-pressure excitonic insulator phase II transforms upon warming or under a modest pressure to give the semiconducting -centred orthorhombic phase I. At higher pressures ( >3 GPa), transformation to the primitive orthorhombic semimetal phase III occurs.

View Article and Find Full Text PDF

The three-dimensional (3D) distribution and oxidation state of a Pt cathode catalyst in a practical membrane electrode assembly (MEA) were visualized in a practical polymer electrolyte fuel cell (PEFC) under fuel-cell operating conditions. Operando 3D computed-tomography imaging with X-ray absorption near edge structure (XANES) spectroscopy (CT-XANES) clearly revealed the heterogeneous migration and degradation of Pt cathode catalyst in an MEA during accelerated degradation test (ADT) of PEFC. The degradative Pt migration proceeded over the entire cathode catalyst layer and spread to MEA depth direction into the Nafion membrane.

View Article and Find Full Text PDF

Mixed-anion perovskites such as oxynitrides, oxyfluorides, and oxyhydrides have flexibility in their anion arrangements, which potentially enables functional material design based on coordination chemistry. However, difficulty in the control of the anion arrangement has prevented the realization of this concept. In this study, we demonstrate strain engineering of the anion arrangement in epitaxial thin films of the CaSrTaON perovskite oxynitrides.

View Article and Find Full Text PDF

When a core level is excited by circularly polarized light, the angular momentum of light is transferred to the emitted photoelectron, which can be confirmed by the parallax shift of the forward focusing peak (FFP) direction in a stereograph of atomic arrangement. No angular momentum has been believed to be transferred to normal Auger electrons resulting from the decay process filling core hole after photoelectron ejection. We succeeded in detecting a non-negligible circular dichroism contrast in a normal Auger electron diffraction from a nonmagnetic Cu(001) surface far off from the absorption threshold.

View Article and Find Full Text PDF