Publications by authors named "Naoya Yahagi"

Article Synopsis
  • A high-protein diet leads the liver to increase enzymes for amino acid breakdown, particularly enhancing the urea cycle for nitrogen excretion.
  • KLF15 is crucial for amino acid metabolism, and recent research shows that FoxO transcription factors are significant regulators of KLF15 in the liver.
  • The study found that FoxOs directly affect urea cycle-related amino acids and regulate hepatic Ass1 expression independently of KLF15, particularly under high-protein conditions.
View Article and Find Full Text PDF

With the rapid development of gene therapy technology in recent years, its abuse as a method of sports doping in athletics has become a concern. However, there is still room for improvement in gene-doping testing methods, and a robust animal model needs to be developed. Therefore, the purposes of this study were to establish a model of gene doping using recombinant adeno-associated virus vector-9, including the human erythropoietin gene (rAAV9-h), and to establish a relevant testing method.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates two cases of extremely low HDL cholesterol levels linked to mutations in the ABCA1 gene, which is important for cholesterol transport, particularly in Tangier disease.
  • In the first case, a 20-year-old woman with multiple health issues showed mutations leading to decreased cholesterol efflux and ABCA1 protein levels, while also having another condition called Krabbe disease.
  • The second case involved a 51-year-old woman with similar low HDL levels and different mutations confirming Tangier disease, highlighting the complexity of mutations and their pathogenic mechanisms.
View Article and Find Full Text PDF

Recent evidence indicates ferroptosis is implicated in the pathophysiology of various liver diseases; however, the organ-specific regulation mechanism is poorly understood. Here, we demonstrate 7-dehydrocholesterol reductase (DHCR7), the terminal enzyme of cholesterol biosynthesis, as a regulator of ferroptosis in hepatocytes. Genetic and pharmacological inhibition (with AY9944) of DHCR7 suppress ferroptosis in human hepatocellular carcinoma Huh-7 cells.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER)-embedded transcription factors, sterol regulatory element-binding proteins (SREBPs), master regulators of lipid biosynthesis, are transported to the Golgi for proteolytic activation to tune cellular cholesterol levels and regulate lipogenesis. However, mechanisms by which the cell responds to the levels of saturated or unsaturated fatty acids remain underexplored. Here, we show that RHBDL4/RHBDD1, a rhomboid family protease, directly cleaves SREBP-1c at the ER.

View Article and Find Full Text PDF

Unlabelled: Type 2 diabetes is a progressive disorder denoted by hyperglycemia and impaired insulin secretion. Although a decrease in β-cell function and mass is a well-known trigger for diabetes, the comprehensive mechanism is still unidentified. Here, we performed single-cell RNA sequencing of pancreatic islets from prediabetic and diabetic db/db mice, an animal model of type 2 diabetes.

View Article and Find Full Text PDF

During periods of fasting, the body undergoes a metabolic shift from carbohydrate utilization to the use of fats and ketones as an energy source, as well as the inhibition of de novo lipogenesis and the initiation of gluconeogenesis in the liver. The transcription factor sterol regulatory element-binding protein-1 (SREBP-1), which plays a critical role in the regulation of lipogenesis, is suppressed during fasting, resulting in the suppression of hepatic lipogenesis. We previously demonstrated that the interaction of fasting-induced Kruppel-like factor 15 (KLF15) with liver X receptor serves as the essential mechanism for the nutritional regulation of SREBP-1 expression.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes are interacting comorbidities of obesity, and increased hepatic de novo lipogenesis (DNL), driven by hyperinsulinemia and carbohydrate overload, contributes to their pathogenesis. Fatty acid synthase (FASN), a key enzyme of hepatic DNL, is upregulated in association with insulin resistance. However, the therapeutic potential of targeting FASN in hepatocytes for obesity-associated metabolic diseases is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • In the early stages of obesity, insulin secretion increases as a protective measure to keep glucose levels stable, but this can’t last forever, leading to the failure of β cells and the onset of diabetes.
  • The protein CtBP2 plays a vital role in regulating insulin gene expression in β cells by interacting with another factor, NEUROD1, which helps to open up chromatin at the insulin gene promoter.
  • Reduced levels of CtBP2 in pancreatic islets are observed in both mouse models and humans with obesity, and mice lacking CtBP2 specifically in β cells show glucose intolerance and impaired insulin secretion, indicating its importance in maintaining β cell health and offering potential targets for obesity-related treatments.
View Article and Find Full Text PDF
Article Synopsis
  • Maintaining the balance of metabolism is really important, but too much food can mess it up, especially in obesity.
  • Researchers found out how two important proteins, PPARα and CtBP2, interact in a way that can slow down fat processing when there's extra fat in the body.
  • In obese people, this interaction gets stronger, making it harder for the body to break down fat, which could lead to new treatments for obesity-related diseases.
View Article and Find Full Text PDF

ELOVL fatty acid elongase 6 (ELOVL6) controls cellular fatty acid (FA) composition by catalyzing the elongation of palmitate (C16:0) to stearate (C18:0) and palmitoleate (C16:1n-7) to vaccinate (C18:1n-7). Although the transcriptional regulation of has been well studied, the post-transcriptional regulation of is not fully understood. Therefore, this study aims to evaluate the role of microRNAs (miRNAs) in regulating human .

View Article and Find Full Text PDF

Background: Mild cognitive impairment (MCI) is not just a prodrome to dementia, but a very important intervention point to prevent dementia caused by Alzheimer's disease (AD). It has long been known that people with AD have a higher frequency of falls with some gait instability. Recent evidence suggests that vestibular impairment is disproportionately prevalent among individuals with MCI and dementia due to AD.

View Article and Find Full Text PDF

Although branched-chain amino acids (BCAA) are known to stimulate myofibrillar protein synthesis and affect insulin signaling and kynurenine metabolism (the latter being a metabolite of tryptophan associated with depression and dementia), the effects of BCAA supplementation on type 2 diabetes (T2D) are not clear. Therefore, a 24-week, prospective randomized open blinded-endpoint trial was conducted to evaluate the effects of supplementation of 8 g of BCAA or 7.5 g of soy protein on skeletal muscle and glycemic control as well as adverse events in elderly individuals with T2D.

View Article and Find Full Text PDF

We aimed to investigate the status of falls and to identify important risk factors for falls in persons with type 2 diabetes (T2D) including the non-elderly. Participants were 316 persons with T2D who were assessed for medical history, laboratory data and physical capabilities during hospitalization and given a questionnaire on falls one year after discharge. Two different statistical models, logistic regression and random forest classifier, were used to identify the important predictors of falls.

View Article and Find Full Text PDF

Engineered synthetic biomolecular devices that integrate elaborate information processing and precisely regulate living cell behavior have potential in various applications. Although devices that directly regulate key biomolecules constituting inherent biological systems exist, no devices have been developed to control intracellular membrane architecture, contributing to the spatiotemporal functions of these biomolecules. This study developed a synthetic biomolecular device, termed inducible counter mitochondrial morphology (iCMM), to manipulate mitochondrial morphology, an emerging informative property for understanding physiopathological cellular behaviors, on a minute timescale by using a chemically inducible dimerization system.

View Article and Find Full Text PDF

The pancreatic islet vasculature is of fundamental importance to the β-cell response to obesity-associated insulin resistance. To explore islet vascular alterations in the pathogenesis of type 2 diabetes, we evaluated two insulin resistance models: ob/ob mice, which sustain large β-cell mass and hyperinsulinemia, and db/db mice, which progress to diabetes due to secondary β-cell compensation failure for insulin secretion. Time-dependent changes in islet vasculature and blood flow were investigated using tomato lectin staining and in vivo live imaging.

View Article and Find Full Text PDF

KLF15 is a transcription factor that plays an important role in the activation of gluconeogenesis from amino acids as well as the suppression of lipogenesis from glucose. Here we identified the transcription start site of liver-specific KLF15 transcript and showed that FoxO1/3 transcriptionally regulates gene expression by directly binding to the liver-specific promoter. To achieve this, we performed a precise promoter analysis combined with the genome-wide transcription-factor-screening method "TFEL scan", using our original Transcription Factor Expression Library (TFEL), which covers nearly all the transcription factors in the mouse genome.

View Article and Find Full Text PDF

High protein diet (HPD) is an affordable and positive approach in prevention and treatment of many diseases. It is believed that transcriptional regulation is responsible for adaptation after HPD feeding and Kruppel-like factor 15 (KLF15), a zinc finger transcription factor that has been proved to perform transcriptional regulation over amino acid, lipid and glucose metabolism, is known to be involved at least in part in this HPD response. To gain more insight into molecular mechanisms by which HPD controls expressions of genes involved in amino acid metabolism in the liver, we performed RNA-seq analysis of mice fed HPD for a short period (3 days).

View Article and Find Full Text PDF

Aim: We investigated the relationship between cognitive function and olfactory and physical functions in middle-aged persons with and without type 2 diabetes (T2D) to examine the potential of olfactory and physical functions as biomarkers for early cognitive impairment.

Methods: Enrolled were 70 T2D patients (age 40 to <65 y) and 81 age-matched control participants without diabetes. Cognitive function was assessed by the Montreal Cognitive Assessment (MoCA), Trail Making Test parts A and B (TMT-A/-B), Wisconsin Card Sorting Test (WCST), Quick Inventory of Depressive Symptomatology Self-Report (QIDS), and Starkstein Apathy Scale (SAS).

View Article and Find Full Text PDF

While molecular oxygen is essential for aerobic organisms, its utilization is inseparably connected with generation of oxidative insults. To cope with the detrimental aspects, cells evolved antioxidative defense systems, and insufficient management of the oxidative insults underlies the pathogenesis of a wide range of diseases. A battery of genes for this antioxidative defense are regulated by the transcription factors nuclear factor-erythroid 2-like 1 and 2 (NRF1 and NRF2).

View Article and Find Full Text PDF

The identification of upstream transcription factors regulating the expression of a gene is generally not an easy process.  To facilitate this task, we constructed an expression cDNA library named Transcription Factor Expression Library (TFEL), which is composed of nearly all the transcription factors in the mouse genome. Genome-wide screening using this library (TFEL scan method) enables us to easily identify transcription factors controlling any given promoter or enhancer of interest in a chromosomal context-dependent manner.

View Article and Find Full Text PDF

Local cryotherapy is widely used as a treatment for sports-related skeletal muscle injuries. The molecular mechanisms are unknown. To clarify these mechanisms, we applied one to three 15-min cold stimulations at 4 °C to various cell lines (in vitro), the tibialis anterior (TA) muscle (ex vivo), and mouse limbs (in vivo).

View Article and Find Full Text PDF

Background: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic β-cells.

View Article and Find Full Text PDF

In Japan, a new opportunistic community-based walk-in HbA1c testing program at pharmacies was enabled in 2014. An economic evaluation of this program from societal perspective has previously been published. This study examines the effect of a subsidy program for walk-in HbA1c-testing at community pharmacies in Japan on public health care expenditure by conducting a budget impact analysis from payer's perspective.

View Article and Find Full Text PDF

The aim of this study was to clarify degradation characteristics in each tissue of the knee complex of a medial meniscectomy (MMx)-induced knee osteoarthritis (KOA) animal model using classical methods and an alternative comprehensive evaluation method called contrast-enhanced X-ray micro-computed tomography (CEX-μCT), which was developed in the study. Surgical MMx was performed in the right knee joints of five male Wistar rats to induce KOA. At four weeks post-surgery, the synovitis was evaluated using quantitative polymerase chain reaction (qPCR).

View Article and Find Full Text PDF