Publications by authors named "Naoya Tochio"

In contrast to intracellular gene transfer, the direct delivery of expressed proteins is a significantly challenging yet essential technique for elucidating cellular functions, including protein complex structure, liquid-liquid phase separation, therapeutic applications, and reprogramming. In this study, we developed a hybrid nanotube (HyNT) stamp system that physically inserts the HyNTs into adhesive cells, enabling the injection of target molecules through HyNT ducts. This system demonstrates the capability to deliver multiple proteins, such as lactate oxidase (LOx) and ubiquitin (UQ), to approximately 1.

View Article and Find Full Text PDF

The assembly state of enzymes is gaining interest as a mechanism for regulating the function of enzymes in living cells. One of the current topics in enzymology is the relationship between enzyme activity and the assembly state due to liquid-liquid phase separation. In this study, we demonstrated enzyme activation via the formation of enzyme assemblies using L-lactate oxidase (LOX).

View Article and Find Full Text PDF

Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus , the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant.

View Article and Find Full Text PDF

Fibril formation and aggregation of α-synuclein are important for the pathogenesis of neurodegenerative disorders including Parkinson's disease. In familial Parkinson's disease, the G51D mutation of α-synuclein causes severe symptoms and rapid progression. α-Synuclein, an intrinsically disordered protein, was shown to adopt an α-helical tetrameric state that resists fibrillation and aggregation.

View Article and Find Full Text PDF

Facilitates chromatin transcription (FACT) is a histone chaperone that functions as a nucleosome remodeler and a chaperone. The two subunits of FACT, Spt16 and SSRP1, mediate multiple interactions between the subunits and components of the nucleosome. Among the interactions, the role of the DNA-binding domain in SSRP1 has not been characterized.

View Article and Find Full Text PDF

d-amino acid-containing proteins have been found in several human tissues, and the spontaneous accumulation of d-amino acids in proteins is thought to be involved in age-dependent diseases including dementia. Tau, a microtubule-associated protein, is a major component of neurofibrillary tangles in Alzheimer's disease. Site-specific amino acid D-isomerization in Tau has been observed in the brains of patients with Alzheimer's disease.

View Article and Find Full Text PDF

In Alzheimer's, the disease-related protein Tau is hyperphosphorylated and aggregates into neurofibrillary tangles (NFT). The cis isomer of the phosphorylated Thr231-Pro232 has been proposed as a precursor of aggregation ('Cistauosis'), but this aggregation scheme is not yet completely accepted. Here, we synthesized peptides comprising a phosphorylated region including Thr231-Pro232 and an aggregation-core region R1 to investigate isomer-specific-aggregation of Tau.

View Article and Find Full Text PDF

The stress-induced 70 kDa heat shock protein (Hsp70) functions as a molecular chaperone to maintain protein homeostasis. Hsp70 contains an N-terminal ATPase domain (NBD) and a C-terminal substrate-binding domain (SBD). The SBD is divided into the β subdomain containing the substrate-binding site (βSBD) and the α-helical subdomain (αLid) that covers the βSBD.

View Article and Find Full Text PDF

Allosteric communication among domains in modular proteins consisting of flexibly linked domains with complimentary roles remains poorly understood. To understand how complementary domains communicate, we have studied human Pin1, a representative modular protein with two domains mutually tethered by a flexible linker: a WW domain for substrate recognition and a peptidyl-prolyl isomerase (PPIase) domain. Previous studies of Pin1 showed that physical contact between the domains causes dynamic allostery by reducing conformation dynamics in the catalytic domain, which compensates for the entropy costs of substrate binding to the catalytic site and thus increases catalytic activity.

View Article and Find Full Text PDF

Brassinosteroid (BR) is an important plant hormone that is perceived by the BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor. BRI1 is conserved among dicot and monocot species; however, the molecular mechanism underlying BR perception in monocots is not fully understood. We synthesised two BRs, iso-carbabrassinolide (iso-carbaBL) and 6-deoxoBL, which have different BR activities in Arabidopsis thaliana (Arabidopsis) and rice.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs), composed of a histidine kinase sensor (HK) and its cognate response regulator, sense and respond to environmental changes and are related to the virulence of pathogens. TCSs are potential targets for alternative antibiotics and anti-virulence agents. Here we found that waldiomycin, an angucycline antibiotic that inhibits a growth essential HK, WalK, in Gram-positive bacteria, also inhibits several class I HKs from the Gram-negative Escherichia coli.

View Article and Find Full Text PDF
Article Synopsis
  • TALEN (Transcription Activator-Like Effector Nuclease) is a popular tool for genome editing, utilizing a series of TAL-repeats that recognize specific DNA bases through unique mutations.
  • A modified version of TALEN, called VT-TALE, has mutations at non-RVD positions, which enhances its effectiveness in genome editing by improving target recognition and specificity compared to the standard CT-TALE.
  • Research shows that VT-TALE exhibits greater superhelical motion, facilitated by altered hydrogen bonding between TAL-repeats, leading to better engagement with target DNA sequences.
View Article and Find Full Text PDF

The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods.

View Article and Find Full Text PDF

Objective: Dentin collagen can be modified by some plant-derived flavonoids to improve properties of dentin organic matrix. Hesperidin (HPN), a hesperetin-7-O-rutinoside flavonoid, has a potential of dentin modification for being based on evidence that a treatment with HPN may resist collagenase degradation and arrest demineralization of human dentin. In this study, biophysical and molecular-level information on the interaction of HPN and collagen was investigated.

View Article and Find Full Text PDF

We identified a novel, nontoxic mushroom protein that specifically binds to a complex of sphingomyelin (SM), a major sphingolipid in mammalian cells, and cholesterol (Chol). The purified protein, termed nakanori, labeled cell surface domains in an SM- and Chol-dependent manner and decorated specific lipid domains that colocalized with inner leaflet small GTPase H-Ras, but not K-Ras. The use of nakanori as a lipid-domain-specific probe revealed altered distribution and dynamics of SM/Chol on the cell surface of Niemann-Pick type C fibroblasts, possibly explaining some of the disease phenotype.

View Article and Find Full Text PDF

Intimate cooperativity among active site residues in enzymes is a key factor for regulating elaborate reactions that would otherwise not occur readily. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is the phosphorylation-dependent cis-trans peptidyl-prolyl isomerase (PPIase) that specifically targets phosphorylated Ser/Thr-Pro motifs. Residues C113, H59, H157, and T152 form a hydrogen bond network in the active site, as in the noted connection.

View Article and Find Full Text PDF
Article Synopsis
  • ZFAT is a transcriptional regulator with 18 zinc-finger motifs involved in autoimmune thyroid disease and immune cell survival.
  • Researchers used NMR spectroscopy to determine the structures of individual zinc-fingers and their arrangements, revealing that some have unique structural features.
  • The specific arrangement and interaction between certain zinc-fingers, particularly ZF4 and ZF5, suggest they function together and may play a role in ZFAT's regulatory capabilities.
View Article and Find Full Text PDF

Intrinsically disordered proteins contain some residual structures, which may fold further upon binding to the partner protein for function. The residual structures observed in two intrinsically disordered proteins, including the C-terminal segment of peripherin-2 (63 residues) and measles virus nucleocapsid protein Ntail (125 residues), were compared using NMR. Differences in the chemical shifts of alpha-, beta- and carbonyl carbons between the observed structure and calculated random coil revealed the existence of a helix and some possible beta-structures in both proteins.

View Article and Find Full Text PDF

Objective: 2-Hydroxyethylmethacrylate (HEMA) diffuses in wet dentin and promotes adhesion during dentin priming and bonding. We have investigated the molecular level interaction between HEMA and a collagen model by using saturation transfer difference (STD) NMR.

Methods: The binding of HEMA to collagen was preliminarily investigated by suspending demineralized human dentin powders in a 4mM HEMA solution for 1h and measuring the decrease in the HEMA concentration on a spectrophotometer.

View Article and Find Full Text PDF

Pin1 peptidyl-prolyl isomerase (PPIase) catalyzes specifically the pSer/pThr-Pro motif. The cis-trans isomerization mechanism has been studied by various approaches, including X-ray crystallography, site-directed mutagenesis, and the kinetic isotope effect on isomerization. However, a complete picture of the reaction mechanism remains elusive.

View Article and Find Full Text PDF

N-terminal domain of HIV-1 p24 capsid protein is a globular fold composed of seven helices and two β-strands with a flexible structure including the α4-5 loop and both N- and C-terminal ends. However, the protein shows a high tendency (48%) for an intrinsically disordered structure based on the PONDR VL-XT prediction from the primary sequence. To assess the possibility of marginally stabilized structure under physiological conditions, the N-terminal domain of p24 was destabilized by the addition of an artificial flexible tag to either N- or C-terminal ends, and it was analyzed using T1, T2, hetero-nuclear NOE, and amide-proton exchange experiments.

View Article and Find Full Text PDF

Objections: Functional adhesive monomers are formulated with solvents and hydrophilic resin monomers, such as 2-hydroxyethyl methacrylate (HEMA). In theory, exposed collagen fibrils should be covered and protected by the resin matrix. We examined if the atomic- and molecular-level interaction of monomers with collagen would be affected when the monomers are blended with HEMA.

View Article and Find Full Text PDF

HMGB1 (high-mobility group B1) is a ubiquitously expressed bifunctional protein that acts as a nuclear protein in cells and also as an inflammatory mediator in the extracellular space. HMGB1 changes its functions according to the redox states in both intra- and extra-cellular environments. Two cysteines, Cys23 and Cys45, in the A-domain of HMGB1 form a disulfide bond under oxidative conditions.

View Article and Find Full Text PDF

The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein.

View Article and Find Full Text PDF

A peptide that binds and emits fluorescence in response to conformational change in a target protein was developed by in vitro selection using tRNA carrying a fluorogenic amino acid. This technology could prove to be useful for the development of separation-free immunoassays and bio-imaging analyses.

View Article and Find Full Text PDF