Probabilistic computing using probabilistic bits (p-bits) presents an efficient alternative to traditional CMOS logic for complex problem-solving, including simulated annealing and machine learning. Realizing p-bits with emerging devices such as magnetic tunnel junctions introduces device variability, which was expected to negatively impact computational performance. However, this study reveals an unexpected finding: device variability can not only degrade but also enhance algorithm performance, particularly by leveraging timing variability.
View Article and Find Full Text PDFThis article critically investigates the limitations of the simulated annealing algorithm using probabilistic bits (pSA) in solving large-scale combinatorial optimization problems. The study begins with an in-depth analysis of the pSA process, focusing on the issues resulting from unexpected oscillations among p-bits. These oscillations hinder the energy reduction of the Ising model and thus obstruct the successful execution of pSA in complex tasks.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2023
Probabilistic bits (p-bits) have recently been presented as a spin (basic computing element) for the simulated annealing (SA) of Ising models. In this brief, we introduce fast-converging SA based on p-bits designed using integral stochastic computing. The stochastic implementation approximates a p-bit function, which can search for a solution to a combinatorial optimization problem at lower energy than conventional p-bits.
View Article and Find Full Text PDF